Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 194579 by MM42 last updated on 10/Jul/23

if    u_n =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ]   then   u_(n+1) =u_n +u_(n−1)    ?     ;   n=0,1,2,..

ifun=15[(1+52)n(152)n]thenun+1=un+un1?;n=0,1,2,..

Answered by Frix last updated on 10/Jul/23

n={0, 1, 2, 3, 4, 5, 6, 7, ...}  u_n ={0, 1, 1, 2, 3, 5, 8, 13, ...}

n={0,1,2,3,4,5,6,7,...}un={0,1,1,2,3,5,8,13,...}

Commented by MM42 last updated on 10/Jul/23

fibonacci  sequence  please  prove...

fibonaccisequencepleaseprove...

Answered by MM42 last updated on 13/Jul/23

prove  u_n +u_(n−1) =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n +(((1+(√5))/2))^(n−1) −(((1−(√5))/2))^(n−1) ]  =(1/( (√5)))[(((1+(√5))/2))^(n−1) (((1+(√5))/2)+1)−(((1−(√5))/2))^(n−1) (((1−(√5))/2)+1)]  =(1/( (√5)))[(((1+(√5))/2))^(n−1) (((3+(√5))/2))−(((1−(√5))/2))^(n−1) (((3−(√5))/2))]  =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ]=u_(n+1)   metod 2  let  a=((1+(√5))/2)  &  b=((1−(√5))/2)  ⇒u_n =(1/( (√5)))(a^n −b^n )  a+b=1  &  ab=−1   ⇒ x^2 +x−1=0  ; a,b , are the roots   a+b=1⇒a^(n+1) +a^n b=a^n  ⇒a^(n+1) −a^(n−1) =a^n   (i)   b^(n+1) +ab^n =b^n  ⇒b^(n+1) −b^(n−1) =b^n   (ii)  (i)+(ii)⇒a^(n+1) −b^(n+1) =(a^n −b^n )+(a^(n−1) −b^(n−1) )  ⇒u_(n+1) =u_m +u_(n−1)

proveun+un1=15[(1+52)n(152)n+(1+52)n1(152)n1]=15[(1+52)n1(1+52+1)(152)n1(152+1)]=15[(1+52)n1(3+52)(152)n1(352)]=15[(1+52)n(152)n]=un+1metod2leta=1+52&b=152un=15(anbn)a+b=1&ab=1x2+x1=0;a,b,aretherootsa+b=1an+1+anb=anan+1an1=an(i)bn+1+abn=bnbn+1bn1=bn(ii)(i)+(ii)an+1bn+1=(anbn)+(an1bn1)un+1=um+un1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com