Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 194837 by mr W last updated on 16/Jul/23

for x>0 find the minimum of the  function f(x)=x^3 +(5/x).

forx>0findtheminimumofthefunctionf(x)=x3+5x.

Answered by Frix last updated on 16/Jul/23

f′(x)=0  3x^2 −(5/x^2 )=0  x=±((5/3))^(1/4)   f(((5/3))^(1/4) )=4×((5/3))^(3/4)

f(x)=03x25x2=0x=±(53)14f((53)14)=4×(53)34

Answered by mr W last updated on 16/Jul/23

an other way:  f(x)=x^3 +(5/(3x))+(5/(3x))+(5/(3x))          ≥4(x^3 ×(5/(3x))×(5/(3x))×(5/(3x)))^(1/4) =4((5/3))^(3/4)   ⇒minimum=4((5/3))^(3/4)   when x^3 =(5/(3x)), i.e. x=((5/3))^(1/4)

anotherway:f(x)=x3+53x+53x+53x4(x3×53x×53x×53x)14=4(53)34minimum=4(53)34whenx3=53x,i.e.x=(53)14

Terms of Service

Privacy Policy

Contact: info@tinkutara.com