Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 194851 by Guriya last updated on 17/Jul/23

Name   Zainab Bibi  BC200400692  Assignmeng No#2   Mth 621  solution..  a_n =(((n− )!)/((n+ )^2 ))  a_(n+ ) =(((n+ − )!)/((n+ + )^2 ))=(((n)!)/((n+2)^2 ))  by ratio test  (a_(n+ ) /a_n )=((((n)!)/((n+2)))/(((n− )!)/((n+ )^2 )))=(((n)!)/((n+2)^2 ))×(((n+ )^2 )/((n+ )!))  lim_(n→∞)  (a_(n+ ) /a_n )=lim_(n→∞) ((n(n− )!)/((n+2)^2 ))×(((n+ )^2 )/((n− )!))     ∵(n)!=n(n− )!  lim_(n→∞) (a_(n+ ) /a_n )=lim_(n→∞) ((n(n+ )^2 )/((n+2)^2 ))=lim_(n→∞) ((n(n^2 +1+2n))/(n^2 +4+4n))  lim_(n→∞) (((n^3 +n+2n^2 ))/(n^2 +4+4n))=lim_(n→∞) (((1+(1/n^2 )+(2/n)))/((1/n)+(1/n^3 )+(4/n^2 )))  Divided by n^3  to numerator and denominator   Now by Applying limit  (((1+(1/∞^(2 ) )+(2/∞)))/((1/∞)+(4/∞^3 )+(4/∞^2 )))=((1+0+0)/(0+0+0))=(1/0)=∞  lim_(n→∞) (a_(n+1) /a_n )=∞

NameZainabBibiBC200400692You can't use 'macro parameter character #' in math modeMth621solution..an=(n)!(n+)2an+=(n+)!(n++)2=(n)!(n+2)2byratiotestan+an=(n)!(n+2)(n)!(n+)2=(n)!(n+2)2×(n+)2(n+)!limnan+an=limnn(n)!(n+2)2×(n+)2(n)!(n)!=n(n)!limnan+an=limnn(n+)2(n+2)2=limnn(n2+1+2n)n2+4+4nlimn(n3+n+2n2)n2+4+4n=limn(1+1n2+2n)1n+1n3+4n2Dividedbyn3tonumeratoranddenominatorNowbyApplyinglimit(1+12+2)1+43+42=1+0+00+0+0=10=limnan+1an=

Commented by Frix last updated on 17/Jul/23

(1/0)=∞ is not allowed; instead use this:  (a_(n+ ) /a_n )=((((n)!)/((n+2)))/(((n− )!)/((n+ )^2 )))=(((n)!)/((n+2)^2 ))×(((n+ )^2 )/((n− )!))=  =n×((n^2 +2n+1)/(n^2 +4n+4))=n×(1+((2n+1)/(n^2 +4n+1)))  lim_(n→∞)  n =∞  lim_(n→∞)  1 =1  lim_(n→∞)  ((2n+1)/(n^2 +4n+1)) =0  ∞×(1+0)=∞

10=isnotallowed;insteadusethis:an+an=(n)!(n+2)(n)!(n+)2=(n)!(n+2)2×(n+)2(n)!==n×n2+2n+1n2+4n+4=n×(1+2n+1n2+4n+1)limnn=limn1=1limn2n+1n2+4n+1=0×(1+0)=

Terms of Service

Privacy Policy

Contact: info@tinkutara.com