Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 195027 by York12 last updated on 22/Jul/23

a_3 x^3 −x^2 +a_1 x−7=0 is a cubic polynomial in x  whose Roots are α , β , γ positive real numbers  satisfying  ((225α^2 )/(α^2 +7))=((144β^2 )/(β^2 +7))=((100γ^2 )/(γ^2 +7))  find (a_1 )

a3x3x2+a1x7=0isacubicpolynomialinxwhoseRootsareα,β,γpositiverealnumberssatisfying225α2α2+7=144β2β2+7=100γ2γ2+7find(a1)

Commented by mr W last updated on 25/Jul/23

i got a_1 =((77)/(15))

igota1=7715

Commented by York12 last updated on 25/Jul/23

please sir explain why

pleasesirexplainwhy

Answered by mr W last updated on 25/Jul/23

⇒α+β+γ=(1/a_3 )  ((1/x))^3 −(a_1 /7)((1/x))^2 +(1/7)((1/x))−(a_3 /7)=0  ⇒(a_1 /7)=(1/α)+(1/β)+(1/γ)    a_3 x^3 −x^2 +a_1 x−7=0  x^2 +7=x(a_3 x^2 +a_1 )  ((225α^2 )/(α^2 +7))=((144β^2 )/(β^2 +7))=((100γ^2 )/(γ^2 +7))=(1/k), say  ((225α^2 )/(α(a_3 α^2 +a_1 )))=((144β^2 )/(β(a_3 β^2 +a_1 )))=((100γ^2 )/(γ(a_3 γ^2 +a_1 )))=(1/k)  ⇒a_3 α+(a_1 /α)=225k  ⇒a_3 β+(a_1 /β)=144k  ⇒a_3 γ+(a_1 /γ)=100k  ⇒a_3 (α+β+γ)+a_1 ((1/α)+(1/β)+(1/γ))=469k  ⇒1+(a_1 ^2 /7)=469k  ⇒a_1 =(√(7(469k−1)))    ((225)/(1+(7/α^2 )))=((144)/(1+(7/β^2 )))=((100)/(1+(7/γ^2 )))=(1/k)  ⇒((√7)/α)=(√(225k−1))  ⇒((√7)/β)=(√(144k−1))  ⇒((√7)/γ)=(√(100k−1))  (√7)((1/α)+(1/β)+(1/γ))=(√(225k−1))+(√(144k−1))+(√(100k−1))  (a_1 /( (√7)))=(√(225k−1))+(√(144k−1))+(√(100k−1))  ⇒(√(469k−1))=(√(225k−1))+(√(144k−1))+(√(100k−1))  ⇒(√(225k−1))+(√(144k−1))=(√(469k−1))−(√(100k−1))  ⇒(√((225k−1)(144k−1)))=100k−(√((469k−1)(100k−1)))  ⇒245k−2=2(√((469k−1)(100k−1)))  ⇒127575k=1296  ⇒k=((1296)/(127575))=((16)/(1575))  a_1 =(√(7(((469×16)/(1575))−1)))=((77)/(15)) ✓    α=(√(7/(225×((16)/(1575))−1)))=(7/3)  β=(√(7/(144×((16)/(1575))−1)))=((35)/9)  γ=(√(7/(100×((16)/(1575))−1)))=21  a_3 =(1/((7/3)+((35)/9)+21))=(9/(245))

α+β+γ=1a3(1x)3a17(1x)2+17(1x)a37=0a17=1α+1β+1γa3x3x2+a1x7=0x2+7=x(a3x2+a1)225α2α2+7=144β2β2+7=100γ2γ2+7=1k,say225α2α(a3α2+a1)=144β2β(a3β2+a1)=100γ2γ(a3γ2+a1)=1ka3α+a1α=225ka3β+a1β=144ka3γ+a1γ=100ka3(α+β+γ)+a1(1α+1β+1γ)=469k1+a127=469ka1=7(469k1)2251+7α2=1441+7β2=1001+7γ2=1k7α=225k17β=144k17γ=100k17(1α+1β+1γ)=225k1+144k1+100k1a17=225k1+144k1+100k1469k1=225k1+144k1+100k1225k1+144k1=469k1100k1(225k1)(144k1)=100k(469k1)(100k1)245k2=2(469k1)(100k1)127575k=1296k=1296127575=161575a1=7(469×1615751)=7715α=7225×1615751=73β=7144×1615751=359γ=7100×1615751=21a3=173+359+21=9245

Commented by York12 last updated on 25/Jul/23

thanks so much

thankssomuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com