Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 19505 by Tinkutara last updated on 12/Aug/17

Prove that two straight lines with  complex slopes μ_1  and μ_2  are parallel  and perpendicular according as μ_1  = μ_2   and μ_1  + μ_2  = 0. Hence if the straight  lines α^� z + αz^�  + c = 0 and β^� z + βz^�  + k = 0  are parallel and perpendicular according  as α^� β − αβ^�  = 0 and α^� β + αβ^�  = 0.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{two}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{with} \\ $$$$\mathrm{complex}\:\mathrm{slopes}\:\mu_{\mathrm{1}} \:\mathrm{and}\:\mu_{\mathrm{2}} \:\mathrm{are}\:\mathrm{parallel} \\ $$$$\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according}\:\mathrm{as}\:\mu_{\mathrm{1}} \:=\:\mu_{\mathrm{2}} \\ $$$$\mathrm{and}\:\mu_{\mathrm{1}} \:+\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\:\mathrm{Hence}\:\mathrm{if}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{lines}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\bar {\beta}{z}\:+\:\beta\bar {{z}}\:+\:{k}\:=\:\mathrm{0} \\ $$$$\mathrm{are}\:\mathrm{parallel}\:\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according} \\ $$$$\mathrm{as}\:\bar {\alpha}\beta\:−\:\alpha\bar {\beta}\:=\:\mathrm{0}\:\mathrm{and}\:\bar {\alpha}\beta\:+\:\alpha\bar {\beta}\:=\:\mathrm{0}. \\ $$

Answered by ajfour last updated on 12/Aug/17

complex slope μ_1 =−(α/α^� )   μ_2 =−(β/β^� )   so  μ_1 =μ_2    ⇒   αβ^� −α^� β =0  and   μ_1 +μ_2 =0  ⇒   αβ^� +α^� β =0 .

$$\mathrm{complex}\:\mathrm{slope}\:\mu_{\mathrm{1}} =−\frac{\alpha}{\bar {\alpha}} \\ $$$$\:\mu_{\mathrm{2}} =−\frac{\beta}{\bar {\beta}}\: \\ $$$$\mathrm{so}\:\:\mu_{\mathrm{1}} =\mu_{\mathrm{2}} \:\:\:\Rightarrow\:\:\:\alpha\bar {\beta}−\bar {\alpha}\beta\:=\mathrm{0} \\ $$$$\mathrm{and}\:\:\:\mu_{\mathrm{1}} +\mu_{\mathrm{2}} =\mathrm{0}\:\:\Rightarrow\:\:\:\alpha\bar {\beta}+\bar {\alpha}\beta\:=\mathrm{0}\:. \\ $$

Commented by Tinkutara last updated on 12/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by ajfour last updated on 12/Aug/17

it is a matter of complex slopes..

$$\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{matter}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{slopes}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com