Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 195079 by sonukgindia last updated on 23/Jul/23

Answered by witcher3 last updated on 24/Jul/23

we applie S_n  to this sum witch symetric Groupe of  n element we not this elements σ  cardS_n =n!;{1.....n}→^σ {1,....,n}  S=Σ_(k_1 +...+k_n =m) (1/(2^k_1  (2^k_1  +2^k_2  )....(2^k_1  +2^k_2  +...+2^k_n  )))  =Σ_(k_1 +...+k_n =m) (1/(2^k_(σ(1))  (2^k_(σ(1))  +2^k_(σ(2))  )....(2^k_1  +2^k_2  +...+2^k_n  )))  S=(1/(n!))Σ_(σ∈S_n ) Σ_(k_1 +...+k_n =m) (1/(2^k_(σ(1))  (2^(σ(k_1 )) +2^(σ(k_2 )) )....(2^k_1  +2^k_2  +...+2^k_n  )))  Σ_(σ∈S_n ) (1/(2^(σ(k_1 )) (2^(σ(k_1 )) +2^(σ(k_2 )) ).....(2^k_1  +...+2^k_n  )))=(1/2^(k_1 +k_2 +..+k_n ) )  proof   tack τ(1,2)  transposition of 1 &2  2S_1 =Σ(1/(2^k_1  .....(2^k_1  +..2^k_n  )))+(1/(2^k_2  (2^k_1  +2^k_2  )...(2^k_2  +2^k_1  ....+2^k_n  )))  S_2 =2S_1 =(1/(2^(k_1 +k_2 ) (2^k_1  +2^k_2  +2^k_3  )(2^k_1  +...+2^k_n  )))  S_2 τ(1,3)+S_2 τ(2,3)+S_2 =S_3 =3S_2 =(1/(2^(k_1 +k_2 +k_3 ) (2^k_1  +2^k_2  +2^k_3  +2^k_4  )...(2^k_1  +2^k_2  +..2^k_n  )))  S^((t)) =Σ_(k=1) ^(t−1) S_(m−1) τ(1,t)+S_(m−1) =(1/(2^(k_1 +...+k_t ) .(2^k_1  +2^k_2  +..+2^k_(t+1)  )..(2^k_1  +2^k_2  +..+2^k_n  )))  S^n =nS_(n−1) =(1/2^(k_1 +...+k_n ) )  n!S=Σ_(k_1 +..+k_n =m) (1/2^(k_1 +...+k_n ) )=(1/2^m )  Σ_(k_1 +..+k_n =m) 1=(1/2^m ) (((m+n−1)),((       m)) )  S=( (((   m+n−1)),((          m)) )/(n!2^m ))  “Σ_(σ∈S_n ) (1/(2^k_(σ(1))  (2^(kσ(1)) +2^(kσ(2)) )...(2^(kσ(1)) +2^(kσ(2)) +2^(kσ(n)) ))=(1/2^(k_1 +k_2 +..+k_n ) )”  was the key  σ[1..n]=[1...n]⇒2^(kσ(1)) +...+2^(kσ(n)) =2^k_1  +...+2^k_n   σ is bijection

weapplieSntothissumwitchsymetricGroupeofnelementwenotthiselementsσcardSn=n!;{1.....n}σ{1,....,n}S=k1+...+kn=m12k1(2k1+2k2)....(2k1+2k2+...+2kn)=k1+...+kn=m12kσ(1)(2kσ(1)+2kσ(2))....(2k1+2k2+...+2kn)S=1n!σSnk1+...+kn=m12kσ(1)(2σ(k1)+2σ(k2))....(2k1+2k2+...+2kn)σSn12σ(k1)(2σ(k1)+2σ(k2)).....(2k1+...+2kn)=12k1+k2+..+knprooftackτ(1,2)transpositionof1&22S1=Σ12k1.....(2k1+..2kn)+12k2(2k1+2k2)...(2k2+2k1....+2kn)S2=2S1=12k1+k2(2k1+2k2+2k3)(2k1+...+2kn)S2τ(1,3)+S2τ(2,3)+S2=S3=3S2=12k1+k2+k3(2k1+2k2+2k3+2k4)...(2k1+2k2+..2kn)S(t)=t1k=1Sm1τ(1,t)+Sm1=12k1+...+kt.(2k1+2k2+..+2kt+1)..(2k1+2k2+..+2kn)Sn=nSn1=12k1+...+knn!S=k1+..+kn=m12k1+...+kn=12mk1+..+kn=m1=12m(m+n1m)S=(m+n1m)n!2mσSn12kσ(1)(2kσ(1)+2kσ(2))...(2kσ(1)+2kσ(2)+2kσ(n)=12k1+k2+..+knwasthekeyσ[1..n]=[1...n]2kσ(1)+...+2kσ(n)=2k1+...+2knσisbijection

Commented by witcher3 last updated on 24/Jul/23

car (k_1 ,k_2 ...k_n )∣(k_1 +...+k_n =m)= (((m+n−1)),((       m)) )

car(k1,k2...kn)(k1+...+kn=m)=(m+n1m)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com