All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 195079 by sonukgindia last updated on 23/Jul/23
Answered by witcher3 last updated on 24/Jul/23
weapplieSntothissumwitchsymetricGroupeofnelementwenotthiselementsσcardSn=n!;{1.....n}→σ{1,....,n}S=∑k1+...+kn=m12k1(2k1+2k2)....(2k1+2k2+...+2kn)=∑k1+...+kn=m12kσ(1)(2kσ(1)+2kσ(2))....(2k1+2k2+...+2kn)S=1n!∑σ∈Sn∑k1+...+kn=m12kσ(1)(2σ(k1)+2σ(k2))....(2k1+2k2+...+2kn)∑σ∈Sn12σ(k1)(2σ(k1)+2σ(k2)).....(2k1+...+2kn)=12k1+k2+..+knprooftackτ(1,2)transpositionof1&22S1=Σ12k1.....(2k1+..2kn)+12k2(2k1+2k2)...(2k2+2k1....+2kn)S2=2S1=12k1+k2(2k1+2k2+2k3)(2k1+...+2kn)S2τ(1,3)+S2τ(2,3)+S2=S3=3S2=12k1+k2+k3(2k1+2k2+2k3+2k4)...(2k1+2k2+..2kn)S(t)=∑t−1k=1Sm−1τ(1,t)+Sm−1=12k1+...+kt.(2k1+2k2+..+2kt+1)..(2k1+2k2+..+2kn)Sn=nSn−1=12k1+...+knn!S=∑k1+..+kn=m12k1+...+kn=12m∑k1+..+kn=m1=12m(m+n−1m)S=(m+n−1m)n!2m‘‘∑σ∈Sn12kσ(1)(2kσ(1)+2kσ(2))...(2kσ(1)+2kσ(2)+2kσ(n)=12k1+k2+..+kn″wasthekeyσ[1..n]=[1...n]⇒2kσ(1)+...+2kσ(n)=2k1+...+2knσisbijection
Commented by witcher3 last updated on 24/Jul/23
car(k1,k2...kn)∣(k1+...+kn=m)=(m+n−1m)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com