Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 195126 by Erico last updated on 25/Jul/23

Soit f_n (x)=2^(n+1) [(((1/2^n )cotan((x/2^n ))−cotanx)/(sin((x/2^n ))))]  Calculer lim_(x→0) f_n (x) et lim_(n→+∞)  ((f_n (x))/2^(2n+2) )

Soitfn(x)=2n+1[12ncotan(x2n)cotanxsin(x2n)]Double subscripts: use braces to clarify

Answered by MM42 last updated on 25/Jul/23

f_n (x)=((2sinxcos((x/2^n ))−2^(n+1) sin((x/2^n ))cosx)/(sin^2 ((x/2^n ))sinx))  =((sin(x+(x/2^n ))+sin(x−(x/2^n ))−2^n sin((x/2^n )+x)−2^n sin((x/2^n )−x))/(sin^2 ((x/2^n ))sinx))  =(((1−2^n )sin(((1+2^n )/2^n ))x−(1+2^n )sin(((1−2^n )/2^n )))/(sin^2 ((x/2^n ))sinx))  =2^n ×((((1−2^n )/2^n )sin(((1+2^n )/2^n ))x−((1+2^n )/2^n )sin(((1−2^n )/2^n )))/(sin^2 ((x/2^n ))sinx))  Tip :if  x→0 ⇒ asinbx−bsinax ∼ ((ab(a−b)(a+b))/6)x^3   ⇒lim_(x→0)  f_n (x)=lim_(x→0)  2^n ×(((((1−2^n )/2^n ))(((1+2^n )/2^n ))(((1−2^n )/2^n )−((1+2^n )/2^n ))(((1−2^n )/2^n )+((1+2^n )/2^n ))(x^3 /6))/(((x/2^n ))^2 ×x))  = (((1−2^(2n) )(−2^(n+1) )×2^(3n) (2))/(2^(4n) ×6))=  =((2^(2n+1) −2)/3)  ✓    lim_(n→∞)  ((f_n (x))/2^(2n+2) ) =(1/6) ✓

fn(x)=2sinxcos(x2n)2n+1sin(x2n)cosxsin2(x2n)sinx=sin(x+x2n)+sin(xx2n)2nsin(x2n+x)2nsin(x2nx)sin2(x2n)sinx=(12n)sin(1+2n2n)x(1+2n)sin(12n2n)sin2(x2n)sinx=2n×12n2nsin(1+2n2n)x1+2n2nsin(12n2n)sin2(x2n)sinxTip:ifx0asinbxbsinaxab(ab)(a+b)6x3limx0fn(x)=limx02n×(12n2n)(1+2n2n)(12n2n1+2n2n)(12n2n+1+2n2n)x36(x2n)2×x=(122n)(2n+1)×23n(2)24n×6==22n+123limnfn(x)22n+2=16

Terms of Service

Privacy Policy

Contact: info@tinkutara.com