Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 195325 by mathlove last updated on 30/Jul/23

prove that  lim_(x→(π/2))  ((tan((x/2))−1)/(x−(π/2)))=1

provethatlimxπ2tan(x2)1xπ2=1

Answered by BaliramKumar last updated on 30/Jul/23

lim_(x→(π/2))  (((d/dx)(tan((x/2))−1))/((d/dx)(x−(π/2)))) = ((sec^2 ((x/2))∙(1/2))/1)  (1/2)sec^2 ((π/4)) = (1/2)((√2))^2  = 1

limxπ2ddx(tan(x2)1)ddx(xπ2)=sec2(x2)12112sec2(π4)=12(2)2=1

Answered by som(math1967) last updated on 30/Jul/23

lim_(x→(π/2))  ((sin(x/2)−cos(x/2))/(cos(x/2)(x−(π/2))))  lim_(x→(π/2))  (((√2)((1/( (√2)))sin(x/2)−(1/( (√2)))cos(x/2)))/(2cos(x/2)((x/2)−(π/4))))  lim_(x→(π/2))  (((√2)sin((x/2) −(π/4)))/(2×(1/( (√2)))((x/2)−(π/4))))  lim_(x→(π/2))  ((sin((x/2)−(π/4)))/(((x/2)−(π/4))))  let ((x/2)−(π/4))=t   x→(π/2)⇒(x/2)→(π/4) ∴((x/2)−(π/4))→0  ∴ lim_(t→0) ((sint)/t)=1

limxπ2sinx2cosx2cosx2(xπ2)limxπ22(12sinx212cosx2)2cosx2(x2π4)limxπ22sin(x2π4)2×12(x2π4)limxπ2sin(x2π4)(x2π4)let(x2π4)=txπ2x2π4(x2π4)0limt0sintt=1

Commented by mathlove last updated on 30/Jul/23

tnks

tnks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com