Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 195342 by Matica last updated on 31/Jul/23

  1. Prove that  ∀n ∈ N^∗  , 4^n (n!)^3  < (n+1)^(3n)  .  2. Solve the equations in Z^2  :       a./  2x^3 +xy−7=0 ,       b./  x(x+1)(x+7)(x+8)=y^2 .

1.ProvethatnN,4n(n!)3<(n+1)3n.2.SolvetheequationsinZ2:a./2x3+xy7=0,b./x(x+1)(x+7)(x+8)=y2.

Answered by Rasheed.Sindhi last updated on 31/Jul/23

     a./  2x^3 +xy−7=0               x(2x^2 +y)=7   { ((x=1 ∧ 2x^2 +y=7⇒y=5 )),((x=−1 ∧ 2x^2 +y=−7⇒y=−9  )),((x=7 ∧ 2x^2 +y=1⇒y=−97 )),((x=−7 ∧ 2x^2 +y=−1⇒y=−99 )) :}

a./2x3+xy7=0x(2x2+y)=7{x=12x2+y=7y=5x=12x2+y=7y=9x=72x2+y=1y=97x=72x2+y=1y=99

Commented by Matica last updated on 31/Jul/23

Thank you. So the trick is “ don′t forget   x, y ∈ Z.

Thankyou.Sothetrickisdontforgetx,yZ.

Answered by Rasheed.Sindhi last updated on 31/Jul/23

     b./  x(x+1)(x+7)(x+8)=y^2   SOME cases:  •x(x+1)=(x+7)(x+8)     x^2 +x=x^2 +15x+56      14x+56=0⇒x=−4✓  •x(x+7)=(x+1)(x+8)     x^2 +7x=x^2 +9x+8      2x+8=0⇒x=−4✓  •x(x+8)=(x+1)(x+7)     x^2 +8x=x^2 +8x+7 (No result)  •x=x(x+1)(x+7)(x+8) (x∉Z)  •x+1=x(x+7)(x+8)    (x∉Z)  •x+7=x(x+1)(x+8)   (x∉Z)  •x(x+1)(x+7)(x+8)=0    x=0,−1,−7,−8 ✓  •x(x+1)(x+7)(x+8)=144     x=1,−4,−9 ✓

b./x(x+1)(x+7)(x+8)=y2SOMEcases:x(x+1)=(x+7)(x+8)x2+x=x2+15x+5614x+56=0x=4x(x+7)=(x+1)(x+8)x2+7x=x2+9x+82x+8=0x=4x(x+8)=(x+1)(x+7)x2+8x=x2+8x+7(Noresult)x=x(x+1)(x+7)(x+8)(xZ)x+1=x(x+7)(x+8)(xZ)x+7=x(x+1)(x+8)(xZ)x(x+1)(x+7)(x+8)=0x=0,1,7,8x(x+1)(x+7)(x+8)=144x=1,4,9

Commented by Matica last updated on 01/Aug/23

Thank you.

Thankyou.

Answered by witcher3 last updated on 31/Jul/23

k(n−k)≤(n^2 /4)  n!≤(((n+1)^n )/4^(n/3) )  if n=2m  n!=Π_(k=1) ^m k(2m+1−k)≤Π_(k=1) ^m (((k+2m+1−k))/2))^2   Am GM,xy≤(((x+y)/2))^(2...)   ≤(((2m+1)^(2m) )/4^m )=(((n+1)^n )/4^(n/2) )≤(((n+1)^n )/4^(n/3) ),(n/2)>(n/3)  if n=2m+1  n!=(m+1)Π_(k=1) ^m (2m+2−k)k  ≤(m+1)Π_(k=1) ^m .(((2m+2)/2))^2 =(m+1)((((2m+2)^(2m) )/4^m ))  =(((2m+2)^(2m+1) )/4^(m+(1/2)) )=(((n+1)^n )/4^(n/2) )<(((n+1)^n )/4^(n/3) )  ⇒∀n∈N 4^n (n!)^3 ≤(n+1)^(3n)

k(nk)n24n!(n+1)n4n3ifn=2mn!=mk=1k(2m+1k)mk=1(k+2m+1k)2)2AmGM,xy(x+y2)2...(2m+1)2m4m=(n+1)n4n2(n+1)n4n3,n2>n3ifn=2m+1n!=(m+1)mk=1(2m+2k)k(m+1)mk=1.(2m+22)2=(m+1)((2m+2)2m4m)=(2m+2)2m+14m+12=(n+1)n4n2<(n+1)n4n3nN4n(n!)3(n+1)3n

Commented by Matica last updated on 01/Aug/23

Thank you brother.

Thankyoubrother.

Commented by witcher3 last updated on 01/Aug/23

withe Pleasur god bless You

withePleasurgodblessYou

Answered by Rasheed.Sindhi last updated on 31/Jul/23

     b./  x(x+1)(x+7)(x+8)=y^2   Let x+4=a  ⇒(a−4)(a−3)(a+3)(a+4)=y^2        (a^2 −16)(a^2 −9)=y^2         a^4 −25a^2 +144=y^2         a^4 −25a^2 +144−y^2 =0  a^2 =((25±(√(625−4(144−y^2 ))))/2)      =((25±(√(49+4y^2 )))/2)∈Z^+         (√(49+4y^2 )) ≤25 ∧ 4y^2 +49 is perfect square.      4y^2 +49≤625   y^2 ≤144⇒−12≤y≤12  The value of y for which 4y^2 +49  is perfect square:             y=0,±12  y=0:  a^2 =((25±(√(49+4(0)^2 )))/2)=16,9  a=±4,±3  x=±4−4,±3−4    =0,−8,−1,−7 ✓     y=±12:  a^2 =((25±(√(49+4(±12)^2 )))/2)        =((25±25)/2)=25,0  a=±5,0  x=±5−4,0−4  x=1,−9,−4 ✓     (x,y)=(0,0),(−1,0),(−7,0),(−8,0),                 (1,±12),(−4,±12),(−9,±12)   (Total 10 solutions)

b./x(x+1)(x+7)(x+8)=y2Letx+4=a(a4)(a3)(a+3)(a+4)=y2(a216)(a29)=y2a425a2+144=y2a425a2+144y2=0a2=25±6254(144y2)2=25±49+4y22Z+49+4y2254y2+49isperfectsquare.4y2+49625y214412y12Thevalueofyforwhich4y2+49isperfectsquare:y=0,±12y=0:a2=25±49+4(0)22=16,9a=±4,±3x=±44,±34=0,8,1,7y=±12:a2=25±49+4(±12)22=25±252=25,0a=±5,0x=±54,04x=1,9,4(x,y)=(0,0),(1,0),(7,0),(8,0),(1,±12),(4,±12),(9,±12)(Total10solutions)

Commented by Matica last updated on 01/Aug/23

Tahnk you a lot.

Tahnkyoualot.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com