Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 195393 by Erico last updated on 01/Aug/23

prove that   lim_(x→0)  (((Σ_(k=1) ^n (1−(1/(2k)))^x )/n))^(1/(  x  ))  = (1/4)(C_(2n) ^n )^(1/n)

provethatlimx0nk=1(112k)xnx=14C2nnn

Answered by witcher3 last updated on 01/Aug/23

f(t)=t^x =e^(xln(t)) =1+xln(t)+o(x),x→0  Σ_(k=1) ^n (1−(1/(2k)))^x =Σ(1+xln(1−(1/(2k)))+o(x))  =n+xln(Π_(k=1) ^n (((2k−1)/(2k))))+o(x)  =n+xln(Π_(k=1) ^n (((2k)(2k−1))/(4k^2 )))+o(x)  =n+xln((((2n)!)/(4^n (n!)^2 )))+o(x)=n+xln((1/4^n )C_(2n) ^n )+o(x)  lim_(x→0) (((1/n)Σ_(k=1) ^n (1−(1/(2k)))^x ))^(1/x) =lim_(x→0) e^((1/x)ln((1/n)(n+xln((1/4^n )C_(2n) ^n )+o(x)))   =lim_(x→0) e^((ln(1+(x/n)ln((1/4^n )C_(2n) ^n )+o(1)))/x) =e^(lim_(x→0) ((ln(1+(x/n)ln((C_(2n) ^n /4^n ))+o(1)))/x))   ≪exp is continus≫  =e^(lim_(x→0) (((x/n)ln((C_(2n) ^n /4^n ))+o(1))/x)) =e^(ln(((C_(2n) ^n /4^n ))^(1/n) )) =((C_(2n) ^n /4^n ))^(1/n)   (1/4)(C_(2n) ^n )^(1/n)

f(t)=tx=exln(t)=1+xln(t)+o(x),x0nk=1(112k)x=Σ(1+xln(112k)+o(x))=n+xln(nk=1(2k12k))+o(x)=n+xln(nk=1(2k)(2k1)4k2)+o(x)=n+xln((2n)!4n(n!)2)+o(x)=n+xln(14nC2nn)+o(x)limx01nnk=1(112k)xx=limex01xln(1n(n+xln(14nC2nn)+o(x))=limex0ln(1+xnln(14nC2nn)+o(1))x=elimx0ln(1+xnln(C2nn4n)+o(1))xexpiscontinus=elimx0xnln(C2nn4n)+o(1)x=eln(C2nn4nn)=C2nn4nn14C2nnn

Terms of Service

Privacy Policy

Contact: info@tinkutara.com