Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 195421 by MathedUp last updated on 02/Aug/23

Calculate.  ∫_0 ^( ∞)   ((sin(z))/(z(z^2 +1)))dz  method 1. using Laplace Transform.  method 2. using Contour Integral.  method 3. using Feymann′s parametirc trick  HELP!!!!!!!

Calculate.0sin(z)z(z2+1)dzmethod1.usingLaplaceTransform.method2.usingContourIntegral.method3.usingFeymannsparametirctrickHELP!!!!!!!

Answered by witcher3 last updated on 02/Aug/23

Commented by witcher3 last updated on 02/Aug/23

Small ΩCircle radius ε  Big  Γ radius R  L=[−R,−ε],L′=[ε,R]  Γ=Re^(ia) ,a∈[0,π]  c=εe^(ia) ,a∈[0,π]  D=Ω∪Γ∪L∪L′  f(z)=(e^(iz) /(z(1+z^2 ))),hase Twos pols in D  z^2 +1=0,z=i  ∫_D f(z)dz=2iπRes(f,i,)=2iπ.(e^(−1) /(i(2i)))=(π/(ie))  ∫_(−R) ^(−ε) f(z)dz+∫_π ^0 f(εe^(ia) ).iεe^(ia) da+∫_ε ^R f(z)dz+∫_0 ^π f(Re^(ia) )iRe^(ia) da  ∫_(−R) ^(−ε) f(z)dz+∫_ε ^R f(z)dz=∫_ε ^R (f(z)+f(−z))dz  =2i∫_ε ^R ((sin(z))/(z(1+z^2 )))dz  lim_(ε→0) ∫_π ^0 f(εe^(ia) )iεe^(ia) da=lim_(ε→0) i∫_π ^0 (e^(iεe^(ia) ) /((1+ε^2 e^(2ia) )))da  integral Cv uniformaly  =i∫_π ^0 lim_(ε→0) (e^(iεe^(ia) ) /(1+ε^2 e^(2ia) ))da=−iπ  lim_(ε→0) ∫_Ω f(z)dz=−iπ  ∫_0 ^π f(Re^(ia) )iRe^(ia) da=i∫_0 ^π (e^(iRe^(ia) ) /(1+R^2 e^(2ia) ))da  =i∫_0 ^π ((e^(iRcos(a)) .e^(−Rsin(a)) )/(1+R^2 e^(2ia) ))  p  ∣((e^(iRcos(a)) .e^(−Rsin(a)) )/(1+R^2 e^(2ia) ))∣≤(e^(−Rsin(a)) /(R^2 −1))⇒  =lim_(R→∞) ∣i∫_0 ^π ((e^(iRcos(a)) .e^(−Rsin(a)) )/(1+R^2 e^(2ia) ))∣da≤∫_0 ^π lim_(R→∞) (e^(−Rsin(a)) /(R^2 −1))da  =0  lim_(R→∞) ∫_Γ f(z)dz=0    lim_(ε→0,R→∞) ∫_D f(z)dz=2i∫_0 ^∞ ((sin(z))/(z(1+z^2 )))dz−iπ+0=(π/(ie))  ∫_0 ^∞ ((sin(x))/(x(1+x^2 )))dx=(π/2)−(π/(2e))=(π/2)(((e−1)/e))

SmallΩCircleradiusϵBigΓradiusRL=[R,ϵ],L=[ϵ,R]Γ=Reia,a[0,π]c=ϵeia,a[0,π]D=ΩΓLLf(z)=eizz(1+z2),haseTwospolsinDz2+1=0,z=iDf(z)dz=2iπRes(f,i,)=2iπ.e1i(2i)=πieRϵf(z)dz+π0f(ϵeia).iϵeiada+ϵRf(z)dz+0πf(Reia)iReiadaRϵf(z)dz+ϵRf(z)dz=ϵR(f(z)+f(z))dz=2iϵRsin(z)z(1+z2)dzlimϵ0π0f(ϵeia)iϵeiada=limiϵ0π0eiϵeia(1+ϵ2e2ia)daintegralCvuniformaly=iπ0limϵ0eiϵeia1+ϵ2e2iada=iπlimϵ0Ωf(z)dz=iπ0πf(Reia)iReiada=i0πeiReia1+R2e2iada=i0πeiRcos(a).eRsin(a)1+R2e2iapeiRcos(a).eRsin(a)1+R2e2ia∣⩽eRsin(a)R21=limRi0πeiRcos(a).eRsin(a)1+R2e2iada0πlimReRsin(a)R21da=0limRΓf(z)dz=0limϵ0,RDf(z)dz=2i0sin(z)z(1+z2)dziπ+0=πie0sin(x)x(1+x2)dx=π2π2e=π2(e1e)

Answered by senestro last updated on 02/Aug/23

(π/2)(1+(1/e))

π2(1+1e)

Answered by witcher3 last updated on 02/Aug/23

Laplace  ∫_0 ^∞ ((sin(zt))/(z(1+z^2 )))dz=f(t)  L(f(t))=∫_0 ^∞ f(t)e^(−ts) dt=∫_0 ^∞ ∫_0 ^∞ ((sin(zt))/(z(1+z^2 )))dze^(−ts) dt  =∫_0 ^∞ (1/(z(1+z^2 )))∫_0 ^∞ sin(zt)e^(−ts) dtdz  =∫_0 ^∞ (1/(z(1+z^2 )))L{sin(zt)}dz  =∫_0 ^∞ (1/(z(1+z^2 ))).(z/(z^2 +s^2 ))dz=∫_0 ^∞ (dz/((1+z^2 )(z^2 +s^2 )))  =(1/2)∫_(−∞) ^∞ (dz/((1+z^2 )(z^2 +s^2 )))=iπ.(1/(2i(s^2 −1)))+iπ.(1/(2is(1−s^2 )))  =(π/(2s(1+s)))=(π/(2s))−(π/(2(1+s)))  f(t)=L^− (L(f(t))=L^− ((π/2)((1/s)−(1/(s+1))))  =(π/2)L^− ((1/s))−(π/2)L^− ((1/(s+1)))=(π/2)−(π/2)e^(−t)   f(t)=∫_0 ^∞ ((sin(xt))/(x(1+x^2 )))dx=(π/2)(1−e^(−t) )  ∫_0 ^∞ ((sin(x))/(x(1+x^2 )))dx=f(1)=(π/2)(1−(1/e))

Laplace0sin(zt)z(1+z2)dz=f(t)L(f(t))=0f(t)etsdt=00sin(zt)z(1+z2)dzetsdt=01z(1+z2)0sin(zt)etsdtdz=01z(1+z2)L{sin(zt)}dz=01z(1+z2).zz2+s2dz=0dz(1+z2)(z2+s2)=12dz(1+z2)(z2+s2)=iπ.12i(s21)+iπ.12is(1s2)=π2s(1+s)=π2sπ2(1+s)f(t)=L(L(f(t))=L(π2(1s1s+1))=π2L(1s)π2L(1s+1)=π2π2etf(t)=0sin(xt)x(1+x2)dx=π2(1et)0sin(x)x(1+x2)dx=f(1)=π2(11e)

Answered by witcher3 last updated on 02/Aug/23

methode (3)  y(t)=∫_0 ^∞ ((sin(xt))/(x(1+x^2 )))dx,t>0  y(0)=0  y′(t)=∫_0 ^∞ ((cos(xt))/(1+x^2 ))dx,y′(0)=(π/2)  y′′(t)=∫_0 ^∞ ((−x^2 sin(xt))/(x(1+x^2 )))dx  Y′′(t)−Y(t)=∫_0 ^∞ ((−x^2 sin(xt))/(x(1+x^2 )))−((sin(xt))/(x(1+x^2 )))dx  =−∫_0 ^∞ ((sin(xt))/x)dx=−∫_0 ^∞ ((sin(xt))/(xt))d(xt)  =−∫_0 ^∞ ((sin(z))/z)dz=−(π/2)  y′′(t)−y(t)=−(π/2)  y(t)=ae^t +be^(−t) +(π/2)  y(0)=0,y′(0)=(π/2)⇒   { ((a+b=−(π/2))),((a−b=(π/2))) :}⇒a=0,b=−(π/2)  y(t)=(π/2)(1−(1/e^t )),y(1)=∫_0 ^∞ ((sin(x))/(x(1+x^2 )))=(π/2)(1−(1/e))

methode(3)y(t)=0sin(xt)x(1+x2)dx,t>0y(0)=0y(t)=0cos(xt)1+x2dx,y(0)=π2y(t)=0x2sin(xt)x(1+x2)dxY(t)Y(t)=0x2sin(xt)x(1+x2)sin(xt)x(1+x2)dx=0sin(xt)xdx=0sin(xt)xtd(xt)=0sin(z)zdz=π2y(t)y(t)=π2y(t)=aet+bet+π2y(0)=0,y(0)=π2{a+b=π2ab=π2a=0,b=π2y(t)=π2(11et),y(1)=0sin(x)x(1+x2)=π2(11e)

Commented by MathedUp last updated on 03/Aug/23

i think you are god of math LOL

ithinkyouaregodofmathLOL

Commented by witcher3 last updated on 03/Aug/23

no Just i just orck Hard and the secret is always   worck hard bro do your best and stop social media!  evrey one withe enough worck progress in evrey   steps of life,   in this forum they are many people Good   in Maths &Physics God bless You Sir  “please Dont use God for a person ”

noJustijustorckHardandthesecretisalwaysworckhardbrodoyourbestandstopsocialmedia!evreyonewitheenoughworckprogressinevreystepsoflife,inthisforumtheyaremanypeopleGoodinMaths&PhysicsGodblessYouSirpleaseDontuseGodforaperson

Commented by MM42 last updated on 03/Aug/23

peace be upon you .you are a   person with a personality.

peacebeuponyou.youareapersonwithapersonality.

Commented by witcher3 last updated on 09/Aug/23

thank You God bless You

thankYouGodblessYou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com