All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 195515 by sulaymonnorboyev140 last updated on 04/Aug/23
∫51x2x−1dx=?
Answered by tri26112004 last updated on 04/Aug/23
Sayt=x−1⇒t2=x−1⇔x2=(t2+1)2→dx=2tdt∙x=1to5⇔t=0to2=∫02(t2+1)2tdt=∫02(t5+2t3+t)dt=(16t6+12t4+12t2)∣02=...
Answered by Calculusboy last updated on 04/Aug/23
letu2=x−1=>u2+1=x(insertthelimit)2ududx=1dx=2udu(continuedsir)
Answered by Frix last updated on 04/Aug/23
∫x2x−1dx=[t=x−1]2∫t2(t2+1)2dt==2t3(15t4+42t2+35)105==2(x−1)32(15x2+12x+8)105+C∫x2x−1dx=[t=1x−1]−2∫(t2+1)2t8dt==2(35t4+42t2+15)105t7==2(x−1)32(15x2+12x+8)105+CAnsweris7088105
Terms of Service
Privacy Policy
Contact: info@tinkutara.com