Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 195515 by sulaymonnorboyev140 last updated on 04/Aug/23

∫_1 ^5 x^2 (√(x−1))dx=?

51x2x1dx=?

Answered by tri26112004 last updated on 04/Aug/23

Say t=(√(x−1))⇒t^2 =x−1⇔x^2 =(t^2 +1)^2   →dx=2tdt  •x=1 to 5 ⇔ t=0 to 2  = ∫^2 _0  (t^2 +1)^2 tdt  = ∫^2 _0  (t^5 +2t^3 +t)dt  = ((1/6)t^6 +(1/2)t^4 +(1/2)t^2 )∣_0 ^2  = ...

Sayt=x1t2=x1x2=(t2+1)2dx=2tdtx=1to5t=0to2=02(t2+1)2tdt=02(t5+2t3+t)dt=(16t6+12t4+12t2)02=...

Answered by Calculusboy last updated on 04/Aug/23

let u^2 =x−1=>u^2 +1=x(insert the limit)  2u(du/dx)=1  dx=2udu(continued sir)

letu2=x1=>u2+1=x(insertthelimit)2ududx=1dx=2udu(continuedsir)

Answered by Frix last updated on 04/Aug/23

∫x^2 (√(x−1))dx =^([t=(√(x−1))])  2∫t^2 (t^2 +1)^2 dt=  =((2t^3 (15t^4 +42t^2 +35))/(105))=  =((2(x−1)^(3/2) (15x^2 +12x+8))/(105))+C    ∫x^2 (√(x−1))dx =^([t=(1/( (√(x−1))))])  −2∫(((t^2 +1)^2 )/t^8 )dt=  =((2(35t^4 +42t^2 +15))/(105t^7 ))=  =((2(x−1)^(3/2) (15x^2 +12x+8))/(105))+C    Answer is ((7088)/(105))

x2x1dx=[t=x1]2t2(t2+1)2dt==2t3(15t4+42t2+35)105==2(x1)32(15x2+12x+8)105+Cx2x1dx=[t=1x1]2(t2+1)2t8dt==2(35t4+42t2+15)105t7==2(x1)32(15x2+12x+8)105+CAnsweris7088105

Terms of Service

Privacy Policy

Contact: info@tinkutara.com