All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 195571 by York12 last updated on 05/Aug/23
letf(x+y)+f(x−y)=2f(x)f(y)∧f(12)=−1compute∑20k=1[1sin(k)sin(k+f(k))]
Answered by mahdipoor last updated on 05/Aug/23
x=1/2y=0⇒2f(1/2)=2f(1/2)f(0)⇒f(0)=1x=1/2y=1/2⇒f(1)+f(0)=2f2(1/2)⇒f(1)=1x=1y=1⇒f(2)+f(0)=2f2(1)⇒f(2)=1x=2y=1⇒f(3)+f(1)=2f(2)f(1)⇒f(3)=1....x=ny=1⇒f(n)+f(n−1)=2f(n)f(1)⇒f(1)=f(n−1)=1⇒f(n)=1....Σ=∑2011sin(k)sin(k+1)
Answered by mr W last updated on 05/Aug/23
f(x)=cos(ax)f(12)=cos(a2)=−1⇒a2=π⇒f(x)=cos(2πx)forx∈Z,f(x)=1∑20k=11sin(k)sin(k+f(k))=∑20k=11sin(k)sin(k+1)≈1.54106054
Commented by York12 last updated on 05/Aug/23
⇒f(x)=cos(2πx)⇒∑20k=1[1sin(k)sin(k+f(k))]=∑20k=1[1sin(k)sin(k+1)]=cosec(1)∑20k=1[sin(1)sin(k)sin(k+1)]=cosec(1)∑20k=1[sin(k+1−k)sin(k)sin(k+1)]=cosec(1)∑20k=1[sin(k+1)cos(k)−cos(k+1)sin(k)sin(k)sin(k+1)]=cosec(1)∑20k=1[cot(k)−cot(k+1)]=cosec(1)[cot(1)−cot(21)]≈3133.3715
Terms of Service
Privacy Policy
Contact: info@tinkutara.com