Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 195628 by mr W last updated on 06/Aug/23

an unsolved old question #190875  a, b, c are real roots of the equation  x^3 −7x^2 +4x+1=0.  find (1/( (a)^(1/3) ))+(1/( (b)^(1/3) ))+(1/( (c)^(1/3) ))=?

You can't use 'macro parameter character #' in math modea,b,carerealrootsoftheequationx37x2+4x+1=0.find1a3+1b3+1c3=?

Commented by Frix last updated on 06/Aug/23

I don′t think we can give the exact value

Idontthinkwecangivetheexactvalue

Commented by mr W last updated on 06/Aug/23

but can we express the result in an  exact form? just like sin (π/(13)), it is  an exact form, even when we don′t  know its exact value.

butcanweexpresstheresultinanexactform?justlikesinπ13,itisanexactform,evenwhenwedontknowitsexactvalue.

Commented by Frix last updated on 06/Aug/23

In this case (as you certainly know) we get  3 trigonometric solutions. I don′t think we  can simplify Σ (1/( (x_j )^(1/3) ))  We′d need to find a 3^(rd)  degree factor of  (1/y^9 )−(7/y^6 )+(4/y^3 )+1=0 ⇔ y^9 +4y^6 −7y^3 +1=0  with 3 real roots and I don′t think that′s  possible.

Inthiscase(asyoucertainlyknow)weget3trigonometricsolutions.IdontthinkwecansimplifyΣ1xj3Wedneedtofinda3rddegreefactorof1y97y6+4y3+1=0y9+4y67y3+1=0with3realrootsandIdontthinkthatspossible.

Answered by witcher3 last updated on 06/Aug/23

(1/( (a)^(1/3) ))..?

1a3..?

Commented by mr W last updated on 06/Aug/23

yes!

yes!

Answered by mr W last updated on 06/Aug/23

a, b, c are roots of  x^3 −7x^2 +4x+1=0.  ((1/x))^3 +4((1/x))^2 −7((1/x))+1=0  so (1/a), (1/b), (1/c) are roots of  z^3 +4z^2 −7z+1=0.  let p=(1/a),q=(1/b),r=(1/c)  p+q+r=−4  pq+qr+rp=−7  pqr=−1  say s=(1/( (a)^(1/3) ))+(1/( (b)^(1/3) ))+(1/( (c)^(1/3) ))=(p)^(1/3) +(q)^(1/3) +(r)^(1/3)   s^3 =p+q+r−3((pqr))^(1/3) +3s(((pq))^(1/3) +((qr))^(1/3) +((rp))^(1/3) )  ⇒s^3 =−1+3st   ...(i)  with t=((pq))^(1/3) +((qr))^(1/3) +((rp))^(1/3)   t^3 =pq+qr+rp−3(((pqr)^2 ))^(1/3) +3t((pqr))^(1/3) ((p)^(1/3) +(q)^(1/3) +(r)^(1/3) )  ⇒t^3 =−10−3ts   ...(ii)  (i)+(ii):  s^3 +t^3 =−11 ⇒t^3 =−11−s^3   (i):   s^3 +1=3st  (s^3 +1)^3 =27s^3 t^3   (s^3 +1)^3 =27s^3 (−11−s^3 )  let u=s^3   (u+1)^3 =27u(−11−u)  u^3 +30u^2 +300u+1=0  let u=v−10  (v−10)^3 +30(v−10)^2 +300(v−10)+1=0  v^3 −999=0  ⇒v=((999))^(1/3)   ⇒s^3 =u=v−10=((999))^(1/3) −10  ⇒s=((((999))^(1/3) −10))^(1/3)   i.e. (1/( (a)^(1/3) ))+(1/( (b)^(1/3) ))+(1/( (c)^(1/3) ))=−((10−((999))^(1/3) ))^(1/3)  ✓

a,b,carerootsofx37x2+4x+1=0.(1x)3+4(1x)27(1x)+1=0so1a,1b,1carerootsofz3+4z27z+1=0.letp=1a,q=1b,r=1cp+q+r=4pq+qr+rp=7pqr=1says=1a3+1b3+1c3=p3+q3+r3s3=p+q+r3pqr3+3s(pq3+qr3+rp3)s3=1+3st...(i)witht=pq3+qr3+rp3t3=pq+qr+rp3(pqr)23+3tpqr3(p3+q3+r3)t3=103ts...(ii)(i)+(ii):s3+t3=11t3=11s3(i):s3+1=3st(s3+1)3=27s3t3(s3+1)3=27s3(11s3)letu=s3(u+1)3=27u(11u)u3+30u2+300u+1=0letu=v10(v10)3+30(v10)2+300(v10)+1=0v3999=0v=9993s3=u=v10=999310s=9993103i.e.1a3+1b3+1c3=1099933

Commented by Frix last updated on 06/Aug/23

Nice!

Nice!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com