Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 195733 by York12 last updated on 09/Aug/23

prove that  Σ_(n=2) ^∞ [(B_n^_  /((n−2)!))]=((e(3−e))/((e−1)^3 ))  where B_n^_   is the n− th bernouli′s number

provethatn=2[Bn_(n2)!]=e(3e)(e1)3whereBn_isthenthbernoulisnumber

Answered by witcher3 last updated on 09/Aug/23

Σ_(n≥0) B_n (x^n /(n!))=(x/(e^x −1))=f(x)  f′(x)=Σ_(n≥1) (x^(n−1) /((n−1)!))B_n   f′′(x)=Σ_(n≥2) B_n (x^(n−2) /((n−2)!))  f′(x)=(((e^x −1)−xe^x )/((e^x −1)^2 ))  f′′(x)=((−xe^x (e^x −1)^2 −2e^x (e^x −1)(e^x −1−xe^x ))/((e^x −1)^4 ))  =((−xe^(2x) +xe^x −2e^(2x) +2e^x +2xe^(2x) )/((e^x −1)^3 ))  =((xe^(2x) +xe^x −2e^(2x) +2e^x )/((e^x −1)^3 ))  f′′(1)=((3e−e^2 )/((e−1)^3 ))=Σ_(n≥1) (B_n /((n−2)!))

n0Bnxnn!=xex1=f(x)f(x)=n1xn1(n1)!Bnf(x)=n2Bnxn2(n2)!f(x)=(ex1)xex(ex1)2f(x)=xex(ex1)22ex(ex1)(ex1xex)(ex1)4=xe2x+xex2e2x+2ex+2xe2x(ex1)3=xe2x+xex2e2x+2ex(ex1)3f(1)=3ee2(e1)3=n1Bn(n2)!

Commented by York12 last updated on 10/Aug/23

I can not find words , but thanks so much  sir

Icannotfindwords,butthankssomuchsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com