Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 195740 by universe last updated on 09/Aug/23

Answered by Frix last updated on 09/Aug/23

Triangle ⇒ a+b>c∧a+c>b∧b+c>a  Let b=(u−v)a∧c=(u+v)a  ⇒ u>(1/2)∧−(1/2)<v<(1/2)  f(u, v)=(1/(2u))+((u−v)/(u+v+1))+((u+v)/(u−v+1))  (3/2)≤f(u, v)<2  (df/dv)=0  ((4(u+1)(2u+1)v)/((u+v+1)^2 (u−v+1)^2 ))=0 ⇒ v=0  f(u, 0)=((4u^2 +u+1)/(2u(u+1)))  (df/du)=0  (((u−1)(3u+1))/(2u^2 (u+1)^2 ))=0 ⇒ u=1  f(1, 0)=(3/2)  occurs when a=b=c    f(u, u)=((4u^2 +1)/(2u))  (df/du)=0  (((2u−1)(2u+1))/(2u^2 ))=0 ⇒ u=(1/2)  f((1/2), (1/2))=2  [Limit at a=c∧b=0]

Trianglea+b>ca+c>bb+c>aLetb=(uv)ac=(u+v)au>1212<v<12f(u,v)=12u+uvu+v+1+u+vuv+132f(u,v)<2dfdv=04(u+1)(2u+1)v(u+v+1)2(uv+1)2=0v=0f(u,0)=4u2+u+12u(u+1)dfdu=0(u1)(3u+1)2u2(u+1)2=0u=1f(1,0)=32occurswhena=b=cf(u,u)=4u2+12udfdu=0(2u1)(2u+1)2u2=0u=12f(12,12)=2[Limitata=cb=0]

Answered by witcher3 last updated on 09/Aug/23

a≥b≥c  a+b≥c+a≥b+c  Δ=(a/(b+c))+(b/(c+a))+(c/(a+b))≥(b/(b+c))+(c/(c+a))+(a/(a+b))  (a/(b+c))+(b/(c+a))+(c/(a+b))≥(c/(b+c))+(a/(c+a))+(b/(a+b))  2((a/(b+c))+(b/(c+a))+(c/(a+b)))≥3⇒(a/(b+c))+(b/(c+a))+(c/(a+b))≥(3/2)  (a/(b+c))+(b/(a+c))+(c/(a+b))=((2a)/(2b+2c))+((2b)/(2a+2c))+((2c)/(2a+2b))  b+c≥a,b+a≥c,a+c≥b⇒  Δ<  ((2a)/(b+a+c))+((2b)/(a+b+c))+((2c)/(a+b+c))=2  (3/2)≤Δ<2

abca+bc+ab+cΔ=ab+c+bc+a+ca+bbb+c+cc+a+aa+bab+c+bc+a+ca+bcb+c+ac+a+ba+b2(ab+c+bc+a+ca+b)3ab+c+bc+a+ca+b32ab+c+ba+c+ca+b=2a2b+2c+2b2a+2c+2c2a+2bb+ca,b+ac,a+cbΔ<2ab+a+c+2ba+b+c+2ca+b+c=232Δ<2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com