All Questions Topic List
Logarithms Questions
Previous in All Question Next in All Question
Previous in Logarithms Next in Logarithms
Question Number 195753 by Erico last updated on 09/Aug/23
Calculer∫01ln2t1−t2dt
Answered by witcher3 last updated on 09/Aug/23
∫01ln2(t)1−t2dt=Γln(sin(x))=−ln(2)−∑n⩾1cos(2nx)nI(n,k)=∫0π2(cos(2nx).cos(2kx))dxI(n,k)=12(∫0π2cos(2(n−k)x)+cos(2(n+k)x)n≠k⇒I(n,k)=0I(n,n)=12(π2)=π4t=sin(x)⇒Γ=∫0π2ln2(sin(x))1−sin2(x)cos(x)dx=∫0π2ln2(sin(x))dx=∫0π2(−ln(2)−∑n⩾1cos(2nx)n)2=∫0π2(ln2(2)+2ln(2)∑n⩾1cos(2nx)n+∑n⩾1∑k⩾1cos(2nx)cos(2kx)nk)=π2ln2(2)+∑n⩾12ln(2)n∫0π2cos(2nx)dx+∑n⩾1∑k⩾11nk∫0π2cos(2nx)cos(2kx)dx=πln2(2)2+∑n⩾11n2.π4=π2(ln2(2)+ζ(2)2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com