Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 195753 by Erico last updated on 09/Aug/23

Calculer ∫^( 1) _( 0) ((ln^2 t)/( (√(1−t^2 ))))dt

Calculer01ln2t1t2dt

Answered by witcher3 last updated on 09/Aug/23

∫_0 ^1 ((ln^2 (t))/( (√(1−t^2 ))))dt=Γ  ln(sin(x))=−ln(2)−Σ_(n≥1) ((cos(2nx))/n)  I(n,k)=∫_0 ^(π/2) (cos(2nx).cos(2kx))dx  I(n,k)=(1/2)(∫_0 ^(π/2) cos(2(n−k)x)+cos(2(n+k)x)  n≠k⇒I(n,k)=0  I(n,n)=(1/2)((π/2))=(π/4)  t=sin(x)⇒Γ=∫_0 ^(π/2) ((ln^2 (sin(x)))/( (√(1−sin^2 (x)))))cos(x)dx  =∫_0 ^(π/2) ln^2 (sin(x))dx  =∫_0 ^(π/2) (−ln(2)−Σ_(n≥1) ((cos(2nx))/n))^2   =∫_0 ^(π/2) (ln^2 (2)+2ln(2)Σ_(n≥1) ((cos(2nx))/n)+Σ_(n≥1) Σ_(k≥1) ((cos(2nx)cos(2kx))/(nk)))  =(π/2)ln^2 (2)+Σ_(n≥1) ((2ln(2))/n)∫_0 ^(π/2) cos(2nx)dx+Σ_(n≥1) Σ_(k≥1) (1/(nk))∫_0 ^(π/2) cos(2nx)cos(2kx)dx  =((πln^2 (2))/2)+Σ_(n≥1) (1/n^2 ).(π/4)=(π/2)(ln^2 (2)+((ζ(2))/2))

01ln2(t)1t2dt=Γln(sin(x))=ln(2)n1cos(2nx)nI(n,k)=0π2(cos(2nx).cos(2kx))dxI(n,k)=12(0π2cos(2(nk)x)+cos(2(n+k)x)nkI(n,k)=0I(n,n)=12(π2)=π4t=sin(x)Γ=0π2ln2(sin(x))1sin2(x)cos(x)dx=0π2ln2(sin(x))dx=0π2(ln(2)n1cos(2nx)n)2=0π2(ln2(2)+2ln(2)n1cos(2nx)n+n1k1cos(2nx)cos(2kx)nk)=π2ln2(2)+n12ln(2)n0π2cos(2nx)dx+n1k11nk0π2cos(2nx)cos(2kx)dx=πln2(2)2+n11n2.π4=π2(ln2(2)+ζ(2)2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com