Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 195895 by Erico last updated on 12/Aug/23

Calcul        ∫^( (π/2)) _( 0) t(√(tan(t))) dt

Calcul0π2ttan(t)dt

Answered by witcher3 last updated on 13/Aug/23

∫_0 ^∞ ((tan^(−1) (t).(√t))/(1+t^2 ))  =∫_0 ^∞ ((√t)/(1+t^2 )).∫_0 ^1 ((tdx)/(1+(xt)^2 )).dx  =∫_0 ^1 ∫_0 ^∞ (t^(3/2) /((1+t^2 )(1+x^2 t^2 )))dtdx  ∫_0 ^∞ (t^(3/2) /((1+t^2 )(1+x^2 t^2 )))dt=A  ∫_(−∞) ^0 (t^(3/2) /((1+t^2 )(1+x^2 t^2 )))=∫_0 ^∞ ((−it^(3/2) )/((1+t^2 )(1+x^2 t^2 )))dt=A  ∫_C (t^(3/2) /((1+t^2 )(1+x^2 t^2 )))=(((i)^(3/2) )/((2i)(1−x^2 ))).+(((i)^(3/2) x^2 )/(x^(3/2) (x^2 −1).2ix))  =(i^(1/2) /(2(1−x^2 )))(1−(1/( (√x))))  =((i^(3/2) π)/( (√x)(1+x)(1+(√x))))=((−πe^((i3π)/4) )/( (√x)(1+(√x))(1+x))).    ∫_0 ^1 ((π(√2))/((1+t)(1+t^2 ))).  =∫_0 ^1 ((π(√2)[1+t^2 +(1−t)(1+t))/(2(1+t)(1+t^2 )))  =(π/( (√2))){∫_0 ^1 (dt/(1+t))+∫_0 ^1 (dt/(1+t^2 ))−∫_0 ^1 ((tdt)/(1+t^2 ))}  =(π/( (√2))){ln(2)+(π/4)−(1/2)ln(2))}  =(π/( (√2)))[((ln(2))/2)+(π/4)]=∫_0 ^(π/2) x(√(tan (x)))dx

0tan1(t).t1+t2=0t1+t2.01tdx1+(xt)2.dx=010t32(1+t2)(1+x2t2)dtdx0t32(1+t2)(1+x2t2)dt=A0t32(1+t2)(1+x2t2)=0it32(1+t2)(1+x2t2)dt=ACt32(1+t2)(1+x2t2)=(i)32(2i)(1x2).+(i)32x2x32(x21).2ix=i122(1x2)(11x)=i32πx(1+x)(1+x)=πei3π4x(1+x)(1+x).01π2(1+t)(1+t2).=01π2[1+t2+(1t)(1+t)2(1+t)(1+t2)=π2{01dt1+t+01dt1+t201tdt1+t2}=π2{ln(2)+π412ln(2))}=π2[ln(2)2+π4]=0π2xtan(x)dx

Commented by Rodier97 last updated on 17/Aug/23

Hi.....i′m having trouble understanding how you did  the second line...i′m still trying to notice that   tan^(−1) (t)= ∫_0 ^1 (1/(1+(xt)^2 )) dx  but where does ′′tdx′′ come from in your term  ∫_0 ^1  ((tdx)/(1+(xt)^2 )) dx  ???  please !

Hi.....imhavingtroubleunderstandinghowyoudidthesecondline...imstilltryingtonoticethattan1(t)=0111+(xt)2dxbutwheredoestdxcomefrominyourterm01tdx1+(xt)2dx???please!

Commented by witcher3 last updated on 20/Aug/23

∫_0 ^1 ((tdx)/(1+(xt)^2 ))=a;xt=y⇒dy=tdx⇒a=∫_0 ^t (dy/(1+y^2 ))=tan^(−1) (t)

01tdx1+(xt)2=a;xt=ydy=tdxa=0tdy1+y2=tan1(t)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com