Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 196008 by universe last updated on 15/Aug/23

Commented by universe last updated on 15/Aug/23

prove that

provethat

Commented by York12 last updated on 15/Aug/23

what is the source of those

whatisthesourceofthose

Answered by MM42 last updated on 17/Aug/23

According to the “ de moivre”  sin(2n+1)α= (((2n+1)),((      1)) )(cosα)^(2n) (sinα)− (((2n+1)),((      3)) )(cosα)^(2n−2) (sinα)^3 + (((2n+1)),((      5)) )(cosα)^(2n−3) (sinα)^5 +...  =(cosα)^(2n) (sinα)[ (((2n+1)),((      1)) )− (((2n+1)),((     3)) )(tanα)^2 + (((2n+1)),((      5)) )(tanα)^4 − (((2n+1)),((      7)) )(tanα)^6 +...]  for α_k =((kπ)/(2n+1))    ; ∀   1≤k≤n ⇒ sin(2n+1)α=0  ⇒ (((2n+1)),((      1)) )− (((2n+1)),((      3)) )(tanα_k )^2 + (((2n+1)),((      5)) )(tanα_k )^4 −....=0  ⇒x_k =(tanα_k )^2     ; 1≤k≤n   the roots of equation are below  x^n − (((2n+1)),((2n−1)) )x^(n−1) + (((2n+1)),((2n−3)) )x^(n−2) −....=0  the sume of the roots “ s= (((2n+1)),((2n−1)) )  ”  ⇒Σ_(k=1) ^n  (tan((kπ)/(2n+1)))^2 =(((2n+1)!)/((2n−1)!))=n(2n+1) ✓    the second part is similary proved

Accordingtothedemoivresin(2n+1)α=(2n+11)(cosα)2n(sinα)(2n+13)(cosα)2n2(sinα)3+(2n+15)(cosα)2n3(sinα)5+...=(cosα)2n(sinα)[(2n+11)(2n+13)(tanα)2+(2n+15)(tanα)4(2n+17)(tanα)6+...]forαk=kπ2n+1;1knsin(2n+1)α=0(2n+11)(2n+13)(tanαk)2+(2n+15)(tanαk)4....=0xk=(tanαk)2;1kntherootsofequationarebelowxn(2n+12n1)xn1+(2n+12n3)xn2....=0thesumeoftherootss=(2n+12n1)nk=1(tankπ2n+1)2=(2n+1)!(2n1)!=n(2n+1)thesecondpartissimilaryproved

Terms of Service

Privacy Policy

Contact: info@tinkutara.com