All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 1961 by alib last updated on 26/Oct/15
Solve...1+sin2x=sinx+cosx
Answered by Rasheed Soomro last updated on 26/Oct/15
1+sin2x=sinx+cosx1+2sinxcosx−sinx−cosx=0sin2x+cos2x+2sinxcosx−(sinx+cosx)=0(sinx+cosx)2−(sinx+cosx)=0(sinx+cosx)(sinx+cosx−1)=0sinx+cosx=0∣sinx+cosx−1=0sinx+cosx=0∣sinx+cosx=1sinx=−cosx∣sinx=1−cosxsin2x=cos2x∣sin2x=1+cos2x−2cosxsin2x=1−sin2x∣1−cos2x=1+cos2x−2cosxsin2x=12∣cos2x−cosx=0x=sin−1(±12)∣cosx(cosx−1)=0⇒cosx=0∨cosx=1x=π4,3π4,5π4,7π4intheinterval(0,2π)∣x=π2,3π2,0in(0,2π)Extraneousrootsmaybeinluded.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com