Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 19610 by ajfour last updated on 13/Aug/17

Prove that the radius of a circle  passing through the midpoints  of the sides of a triangle ABC is  half the radius of a circle circum-  scribed about the triangle.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle} \\ $$$$\mathrm{passing}\:\mathrm{through}\:\mathrm{the}\:\mathrm{midpoints} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{is} \\ $$$$\mathrm{half}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{circum}- \\ $$$$\mathrm{scribed}\:\mathrm{about}\:\mathrm{the}\:\mathrm{triangle}. \\ $$

Commented by ajfour last updated on 13/Aug/17

Commented by ajfour last updated on 13/Aug/17

Let B(0,0)  ;  A(2b,2c) ;  C(2a,0)  R^2 =h^2 +k^2                         ....(1)        =(2a−h)^2 +k^2             ...(2)        =(h−2b)^2 +(2c−k)^2   ...(3)  from (1) and (2):       h=a  and  from  (1) and (3):     (a−2b)^2 +(2c−k)^2 =a^2 +k^2   ⇒    4b^2 −4ab=(2k−2c)(2c)  or    k=c−((b(a−b))/c)  hence  R^2 =a^2 +[((b^2 +c^2 −ab)/c)]^2     r^2 =(x_0 −a)^2 +y_0 ^2           ...(i)        =(x_0 −b)^2 +(y_0 −c)^2      ....(ii)        =(x_0 −a−b)^2 +(y_0 −c)^2   ...(iii)  using (ii) and (iii)  ⇒   x_0 −a−b=b−x_0   or   x_0 =b+(a/2) ;  Also  using (i) and (ii):     r^2 =(b+(a/2)−a)^2 +y_0 ^2 =(b+(a/2)−b)^2 +(y_0 −c)^2   ⇒  c(2y_0 −c)=(a^2 /4)−(b−(a/2))^2   ⇒  c(2y_0 −c)=ab−b^2   ⇒  y_0 =(c/2)+((b(a−b))/(2c))  ⇒  (y_0 −c)^2 =[((b(a−b))/(2c))−(c/2)]^2   using (ii):  r^2 =(a^2 /4)+[((ab−b^2 −c^2 )/(2c))]^2   ⇒  4r^2 =a^2 +[((b^2 +c^2 −ab)/c)]^2 =R^2    ⇒      r=(R/2) .

$$\mathrm{Let}\:\mathrm{B}\left(\mathrm{0},\mathrm{0}\right)\:\:;\:\:\mathrm{A}\left(\mathrm{2b},\mathrm{2c}\right)\:;\:\:\mathrm{C}\left(\mathrm{2a},\mathrm{0}\right) \\ $$$$\mathrm{R}^{\mathrm{2}} =\mathrm{h}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:=\left(\mathrm{2a}−\mathrm{h}\right)^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:...\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:=\left(\mathrm{h}−\mathrm{2b}\right)^{\mathrm{2}} +\left(\mathrm{2c}−\mathrm{k}\right)^{\mathrm{2}} \:\:...\left(\mathrm{3}\right) \\ $$$$\mathrm{from}\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right):\: \\ $$$$\:\:\:\:\mathrm{h}=\mathrm{a}\:\:\mathrm{and}\:\:\mathrm{from}\:\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{3}\right): \\ $$$$\:\:\:\left(\mathrm{a}−\mathrm{2b}\right)^{\mathrm{2}} +\left(\mathrm{2c}−\mathrm{k}\right)^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:\mathrm{4b}^{\mathrm{2}} −\mathrm{4ab}=\left(\mathrm{2k}−\mathrm{2c}\right)\left(\mathrm{2c}\right) \\ $$$$\mathrm{or}\:\:\:\:\mathrm{k}=\mathrm{c}−\frac{\mathrm{b}\left(\mathrm{a}−\mathrm{b}\right)}{\mathrm{c}} \\ $$$$\mathrm{hence}\:\:\mathrm{R}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} +\left[\frac{\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{ab}}{\mathrm{c}}\right]^{\mathrm{2}} \\ $$$$\:\:\mathrm{r}^{\mathrm{2}} =\left(\mathrm{x}_{\mathrm{0}} −\mathrm{a}\right)^{\mathrm{2}} +\mathrm{y}_{\mathrm{0}} ^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:...\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:=\left(\mathrm{x}_{\mathrm{0}} −\mathrm{b}\right)^{\mathrm{2}} +\left(\mathrm{y}_{\mathrm{0}} −\mathrm{c}\right)^{\mathrm{2}} \:\:\:\:\:....\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:=\left(\mathrm{x}_{\mathrm{0}} −\mathrm{a}−\mathrm{b}\right)^{\mathrm{2}} +\left(\mathrm{y}_{\mathrm{0}} −\mathrm{c}\right)^{\mathrm{2}} \:\:...\left(\mathrm{iii}\right) \\ $$$$\mathrm{using}\:\left(\mathrm{ii}\right)\:\mathrm{and}\:\left(\mathrm{iii}\right) \\ $$$$\Rightarrow\:\:\:\mathrm{x}_{\mathrm{0}} −\mathrm{a}−\mathrm{b}=\mathrm{b}−\mathrm{x}_{\mathrm{0}} \\ $$$$\mathrm{or}\:\:\:\mathrm{x}_{\mathrm{0}} =\mathrm{b}+\frac{\mathrm{a}}{\mathrm{2}}\:; \\ $$$$\mathrm{Also}\:\:\mathrm{using}\:\left(\mathrm{i}\right)\:\mathrm{and}\:\left(\mathrm{ii}\right): \\ $$$$\:\:\:\mathrm{r}^{\mathrm{2}} =\left(\mathrm{b}+\frac{\mathrm{a}}{\mathrm{2}}−\mathrm{a}\right)^{\mathrm{2}} +\mathrm{y}_{\mathrm{0}} ^{\mathrm{2}} =\left(\mathrm{b}+\frac{\mathrm{a}}{\mathrm{2}}−\mathrm{b}\right)^{\mathrm{2}} +\left(\mathrm{y}_{\mathrm{0}} −\mathrm{c}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{c}\left(\mathrm{2y}_{\mathrm{0}} −\mathrm{c}\right)=\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}−\left(\mathrm{b}−\frac{\mathrm{a}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{c}\left(\mathrm{2y}_{\mathrm{0}} −\mathrm{c}\right)=\mathrm{ab}−\mathrm{b}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{y}_{\mathrm{0}} =\frac{\mathrm{c}}{\mathrm{2}}+\frac{\mathrm{b}\left(\mathrm{a}−\mathrm{b}\right)}{\mathrm{2c}} \\ $$$$\Rightarrow\:\:\left(\mathrm{y}_{\mathrm{0}} −\mathrm{c}\right)^{\mathrm{2}} =\left[\frac{\mathrm{b}\left(\mathrm{a}−\mathrm{b}\right)}{\mathrm{2c}}−\frac{\mathrm{c}}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$$$\mathrm{using}\:\left(\mathrm{ii}\right): \\ $$$$\mathrm{r}^{\mathrm{2}} =\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}+\left[\frac{\mathrm{ab}−\mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} }{\mathrm{2c}}\right]^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{4r}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} +\left[\frac{\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{ab}}{\mathrm{c}}\right]^{\mathrm{2}} =\mathrm{R}^{\mathrm{2}} \: \\ $$$$\Rightarrow\:\:\:\:\:\:\boldsymbol{\mathrm{r}}=\frac{\boldsymbol{\mathrm{R}}}{\mathrm{2}}\:. \\ $$

Answered by Tinkutara last updated on 13/Aug/17

Let circumradius of original triangle is  R = ((a_1 b_1 c_1 )/(4Δ_1 ))  New sides are (a_1 /2), (b_1 /2) and (c_1 /2) and Δ_2   = (Δ_1 /4)  So R′ = (((a_1 b_1 c_1 )/8)/(4(Δ_1 /4))) = (1/2)(((a_1 b_1 c_1 )/(4Δ_1 ))) = (R/2)

$$\mathrm{Let}\:\mathrm{circumradius}\:\mathrm{of}\:\mathrm{original}\:\mathrm{triangle}\:\mathrm{is} \\ $$$${R}\:=\:\frac{{a}_{\mathrm{1}} {b}_{\mathrm{1}} {c}_{\mathrm{1}} }{\mathrm{4}\Delta_{\mathrm{1}} } \\ $$$$\mathrm{New}\:\mathrm{sides}\:\mathrm{are}\:\frac{{a}_{\mathrm{1}} }{\mathrm{2}},\:\frac{{b}_{\mathrm{1}} }{\mathrm{2}}\:\mathrm{and}\:\frac{{c}_{\mathrm{1}} }{\mathrm{2}}\:\mathrm{and}\:\Delta_{\mathrm{2}} \\ $$$$=\:\frac{\Delta_{\mathrm{1}} }{\mathrm{4}} \\ $$$$\mathrm{So}\:{R}'\:=\:\frac{\frac{{a}_{\mathrm{1}} {b}_{\mathrm{1}} {c}_{\mathrm{1}} }{\mathrm{8}}}{\mathrm{4}\frac{\Delta_{\mathrm{1}} }{\mathrm{4}}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{a}_{\mathrm{1}} {b}_{\mathrm{1}} {c}_{\mathrm{1}} }{\mathrm{4}\Delta_{\mathrm{1}} }\right)\:=\:\frac{{R}}{\mathrm{2}} \\ $$

Commented by ajfour last updated on 13/Aug/17

Excellent!

$$\mathrm{Excellent}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com