All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 196111 by sonukgindia last updated on 18/Aug/23
Answered by mahdipoor last updated on 18/Aug/23
⇒⇒⇒⇒ifn⩽x⇒Σ=(x−1)+...+(x−n)=nx−n2+n2=x2−(n+1)x+(n2+2n+54)⇒x2+(−2n−1)x+(3n2+4n+54)=0⇒x=n+1+n2−42⩾n(n⩾2){note:x⩾n,x=n+1−n2−42<n⇒∄}⇒⇒⇒⇒⇒ifx⩽1⇒...⇒x=1−n2−42⩽1(n⩾2)⇒⇒⇒⇒⇒if1<x<n⇒get⌊x⌋=aΣ=[(x−1)+(x−2)+...+(x−⌊x⌋)]+[(⌊x⌋+1−x)+....+(n−1−x)+(n−x)]=a(2x−1−a)2+(n−a)(a+1+n−2x)2=n2+n2−nx+2ax−a2−a=x2−(n+1)x+n2+2n+54⇒x2−(2a+1)x+(5−n24+a2+a)=0⇒x=a+1±n2−42,⌊x⌋=a⇒⌊a+1±n2−42⌋=a⌊1±n2−42⌋=0⇒onlywhenn=2⇒x=32⇒⇒⇒⇒⇒⇒a1=∄(geta1=0!)a2=2.5+0.5+1.5=4.5an⩾3=n+1+n2−42+1−n2−42=n+1⇒⇒⇒⇒⇒⇒2(a1+...+a20)=1.5+∑202(n+1)=229.5
Terms of Service
Privacy Policy
Contact: info@tinkutara.com