Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 196145 by Erico last updated on 18/Aug/23

Calculer ∫^( +∞) _( (1/α)) e^(−αt^2 +2t) dt

Calculer1α+eαt2+2tdt

Answered by Mathspace last updated on 20/Aug/23

t=(1/α)+x ⇒  ∫_(1/α) ^∞  e^(−αt^2 +2t) dt=∫_0 ^∞ e^(−α((1/α)+x)^2 +2((1/α)+x)) dx  =∫_0 ^∞ e^(−α{(1/α^2 )+((2x)/α)+x^2 }+(2/α)+2x) dx  =∫_0 ^∞  e^(−(1/α)−2x−αx^2 +(2/α)+2x) dx  =e^(1/α)   ∫_0 ^∞  e^(−αx^2 ) dx  ((√α)x=u)  =e^(1/α) ∫_0 ^∞  e^(−u^2 ) (du/( (√α)))  =(e^(1/α) /( (√α))).((√π)/2) ⇒  I=((√π)/(2(√α))) e^(1/α)    (α>0)

t=1α+x1αeαt2+2tdt=0eα(1α+x)2+2(1α+x)dx=0eα{1α2+2xα+x2}+2α+2xdx=0e1α2xαx2+2α+2xdx=e1α0eαx2dx(αx=u)=e1α0eu2duα=e1αα.π2I=π2αe1α(α>0)

Commented by Mathspace last updated on 20/Aug/23

sorry I=((√π)/(2(√α))) e^(−(1/α))

sorryI=π2αe1α

Terms of Service

Privacy Policy

Contact: info@tinkutara.com