Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 196258 by York12 last updated on 21/Aug/23

If(x_m +iy_m )^(2n+1) =1 , such that  m∈{1,2,3,....,2n} ∧ x_m ,y_m ∈R  p=Σ_(k=1) ^(2020) [((1−x_k +iy_k )/(1+x_k +iy_k ))] , Find ((p/(43)))

If(xm+iym)2n+1=1,suchthatm{1,2,3,....,2n}xm,ymRp=2020k=1[1xk+iyk1+xk+iyk],Find(p43)

Commented by York12 last updated on 21/Aug/23

  (x_m +iy_m )=e^((2imπ)/(2n+1)) ,m∈{0,......2n}  Z_m =e^(2i((mπ)/(2n+1))) ,ia_(k,n) =((2ikπ)/(2n+1))  for all the reste n=1010  Σ_(k=1) ^(2020) ((1−x_k +iy_k )/(1+x_k +iy_k ))=Σ_(k=0) ^(2020) ((1−(x_k −iy_k ))/(1+(x_k +iy_k )))=Σ((1−e^(−ia_k ) )/(1+e^(ia_k ) ))  =Σ((e^(ia_k ) −1)/(e^(ia_k ) (1+e^(ia_k ) )))=Σ_k (2/(1+e^(ia_k ) ))−(1/e^(ia_k ) )  ler p(x)=x^(2n+1) −1  ((p′(x))/(p(x)))=Σ_(k=0) ^(2n) (1/(X−e^(ia_k ) ))⇒((p′(−1))/(p(−1)))=−Σ(1/(1+e^(ia_k ) ))  ⇒Σ_(k=0) ^(2020) (1/(1+e^(ia_k ) ))=−(((2021))/(−2))=((2021)/2)  Σ_(k=0) ^(2020) e^(−ia_k ) =((1−(e^(−i((2π)/(2021))) )^(2021) )/(1−e^(−((i2π)/(2021))) ))=0  P=2.((2021)/2)=2021=43.47  (p/(43))=47

(xm+iym)=e2imπ2n+1,m{0,......2n}Zm=e2imπ2n+1,iak,n=2ikπ2n+1foralltheresten=10102020k=11xk+iyk1+xk+iyk=2020k=01(xkiyk)1+(xk+iyk)=Σ1eiak1+eiak=Σeiak1eiak(1+eiak)=k21+eiak1eiaklerp(x)=x2n+11p(x)p(x)=2nk=01Xeiakp(1)p(1)=Σ11+eiak2020k=011+eiak=(2021)2=202122020k=0eiak=1(ei2π2021)20211ei2π2021=0P=2.20212=2021=43.47p43=47

Commented by York12 last updated on 21/Aug/23

Can someone explain  How ((p^′ (x))/(p(x)))=Σ_(k=0) ^(2n) ((1/(x−e^(ia_k ) )))  please

CansomeoneexplainHowp(x)p(x)=2nk=0(1xeiak)please

Commented by sniper237 last updated on 22/Aug/23

Decomposition in simple elements on k(X)

Decompositioninsimpleelementsonk(X)

Commented by York12 last updated on 22/Aug/23

can you write down please I am really lost

canyouwritedownpleaseIamreallylost

Terms of Service

Privacy Policy

Contact: info@tinkutara.com