Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 196304 by cortano12 last updated on 22/Aug/23

Answered by a.lgnaoui last updated on 24/Aug/23

 S=shaded Area  S1=Arc(AMC)   S2=Arc(OBD)   S=S(ABCD)−S1+S2  •Calcul de S(ABCD)    OBsin 30=OAsin 45⇒  OA=5(√2)     S(ABCD)=AB×AC   { ((AB=OBcos 30−OAcos 45)=5((√3) −1))),((AC=2×AM=2×OAsin  45=10)) :}  ⇒S(ABCD)=50((√3) −1)    •calcul de S1   S1=Area[Arc(OAC)]−[area(OAC)]     =π((OA^2 )/4)−OA^2 cos 45sin 45    =((25π)/2)−((50)/2)=((25π−50)/2)    •calcul de S2   S2=Area[arc(OBD)]−Area(OBD)     =π((OB^2 )/6)−OB^2 cos 30sin 30     =((50π)/3)−((50(√3))/2)=  ((100π−150(√3))/6)    alors      Shaded Area=50((√3) −1)−((25π)/2)+25                   +   ((100π−150(√3))/6)  =(((50)/3)−((25)/2))π+(50−25)(√3) −25    =((25π)/6)+25(√3) −25    Shaded Area= 31,39 cm^2

S=shadedAreaS1=Arc(AMC)S2=Arc(OBD)S=S(ABCD)S1+S2CalculdeS(ABCD)OBsin30=OAsin45OA=52S(ABCD)=AB×AC{AB=OBcos30OAcos45)=5(31)AC=2×AM=2×OAsin45=10S(ABCD)=50(31)calculdeS1S1=Area[Arc(OAC)][area(OAC)]=πOA24OA2cos45sin45=25π2502=25π502calculdeS2S2=Area[arc(OBD)]Area(OBD)=πOB26OB2cos30sin30=50π35032=100π15036alorsShadedArea=50(31)25π2+25+100π15036=(503252)π+(5025)325=25π6+25325ShadedArea=31,39cm2

Commented by a.lgnaoui last updated on 24/Aug/23

look at rectification  (error calcul)

lookatrectification(errorcalcul)

Commented by a.lgnaoui last updated on 23/Aug/23

Commented by cortano12 last updated on 24/Aug/23

no sir

nosir

Commented by cortano12 last updated on 24/Aug/23

correct sir

correctsir

Answered by mr W last updated on 23/Aug/23

METHOD I  r sin α=R sin β  ⇒r=((R sin β)/(sin α))  AB=R cos β−r cos α  A_(shade) =β(R^2 −r^2 )+(R cos β−r cos α)R sin β−(α−β)r^2   A_(shade) =R^2 [β(1−((sin^2  β)/(sin^2  α)))+sin β (cos β−((sin β)/(tan α)))−(α−β)(( sin^2  β)/(sin^2  α))]  A_(shade) =10^2 ×((6((√3)−1)+π)/(24))≈31.391

METHODIrsinα=Rsinβr=RsinβsinαAB=RcosβrcosαAshade=β(R2r2)+(Rcosβrcosα)Rsinβ(αβ)r2Ashade=R2[β(1sin2βsin2α)+sinβ(cosβsinβtanα)(αβ)sin2βsin2α]Ashade=102×6(31)+π2431.391

Commented by cortano12 last updated on 24/Aug/23

nice solution

nicesolution

Answered by mr W last updated on 23/Aug/23

METHOD II  r=((R sin β)/(sin α))  A_(shade) =2∫_0 ^(R sin β) ((√(R^2 −x^2 ))−(√(r^2 −x^2 )))dx    =[R^2 sin^(−1) (x/R)−r^2 sin^(−1) (x/r)+x(√(R^2 −x^2 ))−x(√(r^2 −x^2 ))]_0 ^(R sin β)     =R^2 [β−α((sin^2  β)/(sin^2  α))+sin β cos β−((sin^2  β)/(tan α))]    =10^2 ×[((6((√3)−1)+π)/(24))]≈31.391

METHODIIr=RsinβsinαAshade=20Rsinβ(R2x2r2x2)dx=[R2sin1xRr2sin1xr+xR2x2xr2x2]0Rsinβ=R2[βαsin2βsin2α+sinβcosβsin2βtanα]=102×[6(31)+π24]31.391

Commented by mr W last updated on 23/Aug/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com