All Questions Topic List
Coordinate Geometry Questions
Previous in All Question Next in All Question
Previous in Coordinate Geometry Next in Coordinate Geometry
Question Number 196321 by sniper237 last updated on 22/Aug/23
limn→+∞sin(2πn2+1)=0limn→+∞arg(n2+n+1+i)=0
Answered by witcher3 last updated on 22/Aug/23
limsinn→∞(2πn2+1)..sin(2π1+n2)=sin(2πn(1+1n2))1+1n2=1+12n2+o(1n2)sin(2π1+n2)=sin(2π+πn+o(1n))=sin(πn+o(1n)→0elementrywhysin(2πn+x)=sin(x),∀(n,x)∈Z∗C⇔limsinn→∞(2π1+n2)=limsinn→∞(2π1+n2−2πn)=limsinn→∞(2π1+n2+n)=sin(limn→∞.2πn+1+n2)bycontinuityofsin=sin(0)=0arg(n2+n+1+i)≡tan−1(11+n+n2)[2π]limtann→∞−1(11+n+n2)=tan−1(limn→∞1n2+n+1)]≡0[2π]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com