Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196406 by qaz last updated on 24/Aug/23

Σ_(n,m=1) ^∞ (((−1)^(n+m) nm)/((n+m)^2 ))=?

n,m=1(1)n+mnm(n+m)2=?

Answered by witcher3 last updated on 26/Aug/23

=−Σ_(n,m) ∫_0 ^1 ∫_0 ^1 m(−x)^(m+n−1) .ny^((n+m−1)) dxdy  =Σ_(n,m) ∫_0 ^1 ∫_0 ^1 m(−xy)^m .n(−xy)^(n−1) dxdy  Σ_(m≥1) m(−a)^m =(a/((1+a)^2 ))  =∫_0 ^1 ∫_0 ^1 (((xy))/((1+xy)^4 )).dxdy  xy=u⇒ydx=du  =∫_0 ^1 (1/y)∫_0 ^y (u/((1+u)^4 ))du  =∫_0 ^1 (1/y).[−(1/(2(1+u)^2 ))+(1/(3(1+u)^3 ))]_0 ^y   =∫_0 ^1 (1/y)[−(1/(2(1+y)^2 ))+(1/(3(1+y)^3 ))+(1/6)]dy  =∫_0 ^1 (((1+y)^3 +2−3(1+y))/(6(1+y)^3 y))  =∫_0 ^1 ((y^2 +3y)/(6(1+y)^3 ))=∫_0 ^1 (((y+1)^2 +(y+1)−2)/(6(1+y)^3 ))  =(1/6)ln(2)

=n,m0101m(x)m+n1.ny(n+m1)dxdy=n,m0101m(xy)m.n(xy)n1dxdym1m(a)m=a(1+a)2=0101(xy)(1+xy)4.dxdyxy=uydx=du=011y0yu(1+u)4du=011y.[12(1+u)2+13(1+u)3]0y=011y[12(1+y)2+13(1+y)3+16]dy=01(1+y)3+23(1+y)6(1+y)3y=01y2+3y6(1+y)3=01(y+1)2+(y+1)26(1+y)3=16ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com