Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 196408 by Erico last updated on 24/Aug/23

Calcul ∫^( +∞) _( 0) ((lnt)/( (√t)(1+t^2 )))dt

Calcul0+lntt(1+t2)dt

Answered by qaz last updated on 24/Aug/23

∫_0 ^∞ ((lnt)/( (√t)(1+t^2 )))dt=(∂/∂a)∣_(a=−1/2) ∫_0 ^∞ (t^a /(1+t^2 ))dt  =−(∂/∂a)∣_(a=−1/2) (π/2)csc(((a+1)/2)π)=(π^2 /4)cot (((a+1)/2)π)csc(((a+1)/2)π)∣_(a=−1/2)   =(((√2)π^2 )/4)

0lntt(1+t2)dt=aa=1/20ta1+t2dt=aa=1/2π2csc(a+12π)=π24cot(a+12π)csc(a+12π)a=1/2=2π24

Answered by Mathspace last updated on 25/Aug/23

I=∫_0 ^∞  ((lnt)/( (√t)(1+t^2 )))dt    ((√t)=u)  =∫_0 ^∞  ((2lnu)/(u(1+u^4 )))(2u)du  =4∫_0 ^∞   ((lnu)/(1+u^4 ))du   (u^4 =x)  =4∫_0 ^∞   ((ln(x^(1/4) ))/(1+x))×(1/4)x^((1/4)−1) dx  =(1/4)∫_0 ^∞   ((x^((1/4)−1) lnx)/(1+x))dx  f(a)=∫_0 ^∞   (x^(a−1) /(1+x))dx         −1<a<1  f^′ (a)=∫_0 ^∞ (x^(a−1) /(1+x))lnx dx ⇒  4I=f^′ ((1/4))  but f(a)=(π/(sin(πa)))  ⇒f^′ (a)=π.((−πcos(πa))/(sin^2 (πa)))  =−π^2 ((cos(πa))/(sin^2 (πa))) ⇒  f^′ ((1/4))=−π^2 ((cos((π/4)))/(sin^2 ((π/4))))  =−π^2 .(1/( (√2).((1/2))))=−π^2 (√2)  I=(1/4)f^′ ((1/4))⇒I=−((√2)/4)π^2

I=0lntt(1+t2)dt(t=u)=02lnuu(1+u4)(2u)du=40lnu1+u4du(u4=x)=40ln(x14)1+x×14x141dx=140x141lnx1+xdxf(a)=0xa11+xdx1<a<1f(a)=0xa11+xlnxdx4I=f(14)butf(a)=πsin(πa)f(a)=π.πcos(πa)sin2(πa)=π2cos(πa)sin2(πa)f(14)=π2cos(π4)sin2(π4)=π2.12.(12)=π22I=14f(14)I=24π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com