Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 196459 by RoseAli last updated on 25/Aug/23

Answered by Frix last updated on 25/Aug/23

Use Ostrogradski′s Method to get  ∫((x^4 +x^2 +1)/((x^2 +1)^3 ))dx=((x(2x^2 +3))/(2(x^2 +1)))−(1/2)∫(dx/(x^2 +1))=  =((x(2x^2 +3))/(2(x^2 +1)))−((tan^(−1)  x)/2)+C  ⇒  For  (√2)−1≤x≤(√2)+1  the value of the integral is  2−(π/8)

UseOstrogradskisMethodtogetx4+x2+1(x2+1)3dx=x(2x2+3)2(x2+1)12dxx2+1==x(2x2+3)2(x2+1)tan1x2+CFor21x2+1thevalueoftheintegralis2π8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com