Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196828 by ERLY last updated on 01/Sep/23

Answered by Skabetix last updated on 01/Sep/23

2.a) U_(n+1) =(1/2)×(1/U_n )  Comme U_n >0→U_n ≥(1/U_n )→U_(n+1) ≤(1/2)U_n

2.a)Un+1=12×1UnCommeUn>0Un1UnUn+112Un

Answered by a.lgnaoui last updated on 01/Sep/23

 •1 la suute  est vrai pour n=0(u_0 =1>0)  pour n=1  u_1 =(u_0 /2)=(1/2)>0  suposons qu il esr vrai  et montrons  qu elle est vrai pour n+1  u_(n+1) =(u_n /(2+u_n ^2 ))=(u_n /(u_n ((2/u_n )+u_n )))=(1/(u_n +(2/u_n )))  u_n >0⇒  (2/u_n )>0   ⇒  u_(n+1) >0 our tout n∈N  •2   a)  u_(n+1) −(1/2)u_n =−((−u_n ^3 )/(2(2+u_n ^2 ))) <0           donc       u_(n+1) <(u_n /2)

1lasuuteestvraipourn=0(u0=1>0)pourn=1u1=u02=12>0suposonsquilesrvraietmontronsquelleestvraipourn+1un+1=un2+un2=unun(2un+un)=1un+2unun>02un>0un+1>0ourtoutnN2a)un+112un=un32(2+un2)<0doncun+1<un2

Commented by a.lgnaoui last updated on 01/Sep/23

3•lim u_n (n→∞)=lim((1/2^n ))_(n→∞) =0  de plus (u_(n+1) −u_n )<0(suite decroissante)  donc  la suitd (u_n )est convervente  et converge vrrs(0)

3limun(n)=lim(12n)n=0deplus(un+1un)<0(suitedecroissante)donclasuitd(un)estconverventeetconvergevrrs(0)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com