Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 196885 by hardmath last updated on 02/Sep/23

Answered by MM42 last updated on 02/Sep/23

2cosx=(√(2+2cos2x))=(√(2+(√(2+cos4x))))  =(√(2+(√(2+(√(2+cos8x))))))=....=(√(2+(√(2+(√(2+...))))))  let  x=0⇒(√(2+(√(2+(√(2+...))))))=2 ✓

2cosx=2+2cos2x=2+2+cos4x=2+2+2+cos8x=....=2+2+2+...letx=02+2+2+...=2

Commented by hardmath last updated on 02/Sep/23

cool thank you professor

coolthankyouprofessor

Commented by hardmath last updated on 03/Sep/23

Sorry professor, but equalities are satisfied  only if  cos((2^n )x)≥0  ∀n≥0  so  (- (π/2))^(n+1) ≤ x ≤ ((π/2))^(n+1)   ∀n≥0  ⇒ x = 0  Therefore  2cos(0) = ? ⇒ 2 = ?

Sorryprofessor,butequalitiesaresatisfiedonlyifcos((2n)x)0n0so(π2)n+1x(π2)n+1n0x=0Therefore2cos(0)=?2=?

Answered by Mathspace last updated on 02/Sep/23

x=(√(2+(√(2+(√2)+(√(...))))))  ⇒x^2 =2+x ⇒x^2 −x−2=0  Δ=1+8=9 ⇒  x_1 =((1+(√9))/2)  =2  x_2 =((1−(√9))/2)=−1  but x>0 ⇒x=2

x=2+2+2+...x2=2+xx2x2=0Δ=1+8=9x1=1+92=2x2=192=1butx>0x=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com