Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 197060 by universe last updated on 07/Sep/23

Prove that   ∫^( (π/2)) _( 0) ((ln(1+αsint))/(sint))dt= (π^2 /8)−(1/2)(arccosα)^2

Provethat0π2ln(1+αsint)sintdt=π2812(arccosα)2

Commented by universe last updated on 07/Sep/23

question 196950

question196950

Answered by universe last updated on 07/Sep/23

   I    =  ∫_0 ^(𝛑/2) ((log (1+𝛂sin x) dx)/(sin x))   (dI/d𝛂)  =  ∫_0 ^(𝛑/2) (1/(1+𝛂sin x))dx      (dI/d𝛂)  = ∫_0 ^(𝛑/2  ) ((sec^2  x/2)/(1+tan^2 x/2+2𝛂tan x/2))dx  (dI/d𝛂)  =  ∫_0 ^1 ((2dy)/(y^2 +2𝛂y+1)) = ∫^1 _0 ((2dy)/((y+𝛂)^2 +(1−𝛂^2 )))     (dI/d𝛂) = (2/( (√(1−𝛂^2 ))))tan^(−1) ((y+𝛂)/( (√(1−𝛂^2 )))) ∣_0 ^1     (dI/d𝛂) = (2/( (√(1−𝛂^2 ))))[tan^(−1) ((1−𝛂)/( (√(1−𝛂^2 )))) − tan^(−1) (𝛂/( (√(1−𝛂^2 ))))]   (dI/d𝛂)  =   (2/( (√(1−𝛂^2 ))))tan^(−1) (((1/(√(1−𝛂^2 )))/(1+(1+𝛂)𝛂/1−𝛂^2 )))     ∫(dI/d𝛂) = ∫(2/( (√(1−𝛂^2 ))))tan^(−1) (√((1−𝛂)/(1+𝛂))) d𝛂    let  𝛂 = cos𝛃   ⇒  d𝛂  = −sin 𝛃 d𝛃  I   =   −2∫tan^(−1) ((√((1−cos 𝛃)/(1+cos 𝛃))) )d𝛃  I  =  −2∫(𝛃/2) d𝛃    I   =   −(𝛃^2 /2) +c  I =  −(((cos^(−1) 𝛂)^2  )/2) + c  let 𝛂 = 0  then I = 0  c  = (𝛑^2 /8)    I  =   (𝛑^2 /8) − (((cos^(−1) 𝛂)^2 )/2)

I=0π/2log(1+αsinx)dxsinxdIdα=0π/211+αsinxdxdIdα=0π/2sec2x/21+tan2x/2+2αtanx/2dxdIdα=012dyy2+2αy+1=012dy(y+α)2+(1α2)dIdα=21α2tan1y+α1α201dIdα=21α2[tan11α1α2tan1α1α2]dIdα=21α2tan1(1/1α21+(1+α)α/1α2)dIdα=21α2tan11α1+αdαletα=cosβdα=sinβdβI=2tan1(1cosβ1+cosβ)dβI=2β2dβI=β22+cI=(cos1α)22+cletα=0thenI=0c=π28I=π28(cos1α)22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com