All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 197034 by Mingma last updated on 06/Sep/23
Answered by TheHoneyCat last updated on 08/Sep/23
letf:{R→R+α4α21+4α2if(x,y,z)isa‘‘good″tripletthenf(x)=yf(y)=zf(z)=xwenoticethattherefore,usingfeachtripletcanbeuniclydefinedbyit′sfirstelelmentx,theothersbeeingf(x)andf2(x):=f(f(x))Thusthereareasmanytriplesastherearevaluesxsuchthatf3(x)=xf(x)=4x21+4x2f2(x)=4(4x21+4x2)21+4(4x21+4x2)2=4(4x2)2(1+4x2)2+4(4x2)2=26x41+23x2+26x4f3(x)=26(4x21+4x2)41+23(4x21+4x2)2+26(4x21+4x2)4=214x8(1+4x2)4+27(1+4x2)2x4+214x8=214x81+24x2+224x4+1280x6+18688x8f3(x)=xhas3solutions...x=12(Iletyoucheckit)x=0(Iletyoucheckit)andonelastpointthatIwasnotabletocomputealgebraicaly.(actualyIwas,butweshallseethatlater)youcanverifythatthereareonly3because:f3(x)⩾0⇒x⩾0f3(x)isstrictlymonotonousoverR+between0and1/2∃y∣f3(y)<ybetween1/2and0.56∃y∣f3(y)>ybeetween0.57and∞∃y∣f3(y)<ythisgivesusexactly3valuesforxandthereforeexactly3triples.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com