Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 197057 by ajfour last updated on 07/Sep/23

Commented by ajfour last updated on 07/Sep/23

The ant has to climb up the plane  and surmount the wall of height c,  and descend then reach B. Find the  shortest length of path.

Theanthastoclimbuptheplaneandsurmountthewallofheightc,anddescendthenreachB.Findtheshortestlengthofpath.

Commented by Frix last updated on 08/Sep/23

Depending on the values of a, b, c the path  along the diagonal of the rectangle ab and  the rectangle bc on the right side can be  shorter. We have  (√(b^2 +(a+b+c)^2 ))⋛(√(a^2 +b^2 ))+(√(b^2 +c^2 ))    Let b=pa∧c=qa; p, q >0  a(√(p^2 +(1+p+q)^2 ))⋛a(√(1+p^2 ))+a(√(p^2 +q^2 ))  p^2 +(p+q+1)^2 ⋛2p^2 +q^2 +1+2(√((p^2 +q^2 )(p^2 +1)))  p+pq+q⋛(√((p^2 +q^2 )(p^2 +1)))  p(p^3 −2pq−2q(q+1))⋚0  p^3 −2pq−2q(q+1)⋚0    Let q=αp; α>0  p(p^2 −2α(α+1)p−2α)⋚0  p^2 −2α(α+1)p−2α⋚0         p^2 −2α(α+1)p−2α=0       p=α(α+1)±(√(α(α+2)(α^2 +1)))       p_1 =α(α+1)−(√(α(α+2)(α^2 +1)))<0∀α>0       p_2 =α(α+1)+(√(α(α+2)(α^2 +1)))>0∀α>0    We have p>0 ⇒  (p−p_1 )(p−p_2 )<0; 0<p<p_2        (√(b^2 +(a+b+c)^2 ))>(√(a^2 +b^2 ))+(√(b^2 +c^2 ))  (p−p_1 )(p−p_2 )=0; p=p_2        (√(b^2 +(a+b+c)^2 ))=(√(a^2 +b^2 ))+(√(b^2 +c^2 ))  (p−p_1 )(p−p_2 )>0; p>p_2        (√(b^2 +(a+b+c)^2 ))<(√(a^2 +b^2 ))+(√(b^2 +c^2 ))

Dependingonthevaluesofa,b,cthepathalongthediagonaloftherectangleabandtherectanglebcontherightsidecanbeshorter.Wehaveb2+(a+b+c)2a2+b2+b2+c2Letb=pac=qa;p,q>0ap2+(1+p+q)2a1+p2+ap2+q2p2+(p+q+1)22p2+q2+1+2(p2+q2)(p2+1)p+pq+q(p2+q2)(p2+1)p(p32pq2q(q+1))0p32pq2q(q+1)0Letq=αp;α>0p(p22α(α+1)p2α)0p22α(α+1)p2α0p22α(α+1)p2α=0p=α(α+1)±α(α+2)(α2+1)p1=α(α+1)α(α+2)(α2+1)<0α>0p2=α(α+1)+α(α+2)(α2+1)>0α>0Wehavep>0(pp1)(pp2)<0;0<p<p2b2+(a+b+c)2>a2+b2+b2+c2(pp1)(pp2)=0;p=p2b2+(a+b+c)2=a2+b2+b2+c2(pp1)(pp2)>0;p>p2b2+(a+b+c)2<a2+b2+b2+c2

Answered by Frix last updated on 07/Sep/23

(√(b^2 +(a+b+c)^2 ))  The shortest path is the diagonal of the  rectangle we get by unfolding the object.  Its sides are b and (a+b+c)

b2+(a+b+c)2Theshortestpathisthediagonaloftherectanglewegetbyunfoldingtheobject.Itssidesareband(a+b+c)

Answered by mahdipoor last updated on 07/Sep/23

AB=AM+MN+NB⇒  p(x,y)=(√(a^2 +x^2 ))+(√(c^2 +(b−x−y)^2 ))+(√(y^2 +b^2 ))  0≤x,y≤b  (dp/dx)=0=(x/( (√(x^2 +a^2 ))))+(((−b+x+y))/( (√(c^2 +(b−x−y)^2 ))))  (dp/dy)=0=(y/( (√(y^2 +b^2 ))))+(((−b+x+y))/( (√(c^2 +(b−x−y)^2 ))))  ⇒(x/( (√(x^2 +a^2 ))))=(y/( (√(y^2 +b^2 ))))⇒bx=ay  (x/( (√(x^2 +a^2 ))))=((b−(1+(b/a))x)/( (√(c^2 +(b−(1+(b/a))x)^2 ))))⇒  x^2 (c^2 +(b−mx)^2 )=(x^2 +a^2 )(b−mx)^2   ⇒x^2 c^2 =a^2 (b−mx)^2 ⇒xc=ab−(a+b)x  ⇒x=((ab)/((a+b)+c))    &   y=(b^2 /((a+b)+c))      0≤x,y≤b

AB=AM+MN+NBp(x,y)=a2+x2+c2+(bxy)2+y2+b20x,ybdpdx=0=xx2+a2+(b+x+y)c2+(bxy)2dpdy=0=yy2+b2+(b+x+y)c2+(bxy)2xx2+a2=yy2+b2bx=ayxx2+a2=b(1+ba)xc2+(b(1+ba)x)2x2(c2+(bmx)2)=(x2+a2)(bmx)2x2c2=a2(bmx)2xc=ab(a+b)xx=ab(a+b)+c&y=b2(a+b)+c0x,yb

Commented by Frix last updated on 07/Sep/23

You don′t need this. Look at my explanation.

Youdontneedthis.Lookatmyexplanation.

Commented by mahdipoor last updated on 07/Sep/23

Thats right your solution is logical and  faster, the answer is the same for both

Thatsrightyoursolutionislogicalandfaster,theansweristhesameforboth

Commented by Frix last updated on 07/Sep/23

Yes.

Yes.

Answered by ajfour last updated on 08/Sep/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com