Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 197099 by Erico last updated on 07/Sep/23

∫^( (π/2)) _( 0) ((ln(cost))/(sint)) dt=???

0π2ln(cost)sintdt=???

Answered by witcher3 last updated on 07/Sep/23

=∫_0 ^(π/2) ((sin(t)ln(cos(t)))/(1−cos^2 (t)))dt,cos(t)=y  =∫_0 ^1 ((ln(y))/(1−y^2 ))dt=Σ_(n≥0) ∫_0 ^1 y^(2n) ln(t)dt  =−Σ_(n≥0) (1/((2n+1)^2 ))−(ζ(2)−(1/4)ζ(2))=−(π^2 /8)

=0π2sin(t)ln(cos(t))1cos2(t)dt,cos(t)=y=01ln(y)1y2dt=n001y2nln(t)dt=n01(2n+1)2(ζ(2)14ζ(2))=π28

Answered by Mathspace last updated on 09/Sep/23

tan((t/2))=x ⇒  I=∫_0 ^1 ((ln(((1−x^2 )/(1+x^2 ))))/((2x)/(1+x^2 )))((2dx)/(1+x^2 ))  =∫_0 ^1 ((ln(1−x^2 )−ln(1+x^2 ))/x)dx  ln^′ (1−u)=((−1)/(1−u))=−Σ_(n=0) ^∞ u^n   ⇒ln(1−u)=−Σ_(n=0) ^∞ (u^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (u^n /n)  ⇒ln(1−x^2 )=−Σ_(n=1) ^∞ (x^(2n) /n)  ln^′ (1+u)=(1/(1+u))=Σ_(n=0) ^∞ (−1)^n u^n   ⇒ln(1+u)=Σ_(n=0) ^∞ (−1)^n (u^(n+1) /(n+1))  =Σ_(n=1) ^∞ (−1)^(n−1) (u^n /n) and  ln(1+x^2 )=Σ_(n=1) ^∞ (−1)^(n−1) (x^(2n) /n)  ⇒((ln(1−x^2 )−ln(1+x^2 ))/x)  =−(1/x)Σ_(n=1) ^∞ (x^(2n) /n)+(1/x)Σ_(n=1) ^∞ (−1)^n (x^(2n) /n)  =Σ_(n=1) ^∞ ((−1)^n −1)(x^(2n−1) /n)  =−2Σ_(n=1) ^∞  (x^(2(2n+1)−1) /(2n+1))  =−2Σ_(n=1) ^∞ (x^(4n+1) /(2n+1)) and  I=−2Σ_(n=1) ^∞ (1/((2n+1)))∫_0 ^1 x^(4n+1) dx  =−2Σ_(n=1) ^∞ (1/((2n+1)(4n+2)))  =−Σ_(n=1) ^∞ (1/((2n+1)^2 ))  Σ(1/n^2 )=(1/4)Σ(1/n^2 )+Σ(1/((2n+1)^2 ))  ⇒(3/4)Σ(1/n^2 )=Σ(1/((2n+1)^2 ))  ⇒(3/4).(π^2 /6)=Σ(1/((2n+1)^2 ))  ⇒(π^2 /8)=Σ(1/((2n+1)^2 )) ⇒  ∫_0 ^(π/2) ((ln(cosx))/(sinx))=−(π^2 /8)

tan(t2)=xI=01ln(1x21+x2)2x1+x22dx1+x2=01ln(1x2)ln(1+x2)xdxln(1u)=11u=n=0unln(1u)=n=0un+1n+1=n=1unnln(1x2)=n=1x2nnln(1+u)=11+u=n=0(1)nunln(1+u)=n=0(1)nun+1n+1=n=1(1)n1unnandln(1+x2)=n=1(1)n1x2nnln(1x2)ln(1+x2)x=1xn=1x2nn+1xn=1(1)nx2nn=n=1((1)n1)x2n1n=2n=1x2(2n+1)12n+1=2n=1x4n+12n+1andI=2n=11(2n+1)01x4n+1dx=2n=11(2n+1)(4n+2)=n=11(2n+1)2Σ1n2=14Σ1n2+Σ1(2n+1)234Σ1n2=Σ1(2n+1)234.π26=Σ1(2n+1)2π28=Σ1(2n+1)20π2ln(cosx)sinx=π28

Terms of Service

Privacy Policy

Contact: info@tinkutara.com