All Questions Topic List
Logarithms Questions
Previous in All Question Next in All Question
Previous in Logarithms Next in Logarithms
Question Number 197099 by Erico last updated on 07/Sep/23
∫0π2ln(cost)sintdt=???
Answered by witcher3 last updated on 07/Sep/23
=∫0π2sin(t)ln(cos(t))1−cos2(t)dt,cos(t)=y=∫01ln(y)1−y2dt=∑n⩾0∫01y2nln(t)dt=−∑n⩾01(2n+1)2−(ζ(2)−14ζ(2))=−π28
Answered by Mathspace last updated on 09/Sep/23
tan(t2)=x⇒I=∫01ln(1−x21+x2)2x1+x22dx1+x2=∫01ln(1−x2)−ln(1+x2)xdxln′(1−u)=−11−u=−∑n=0∞un⇒ln(1−u)=−∑n=0∞un+1n+1=−∑n=1∞unn⇒ln(1−x2)=−∑n=1∞x2nnln′(1+u)=11+u=∑n=0∞(−1)nun⇒ln(1+u)=∑n=0∞(−1)nun+1n+1=∑n=1∞(−1)n−1unnandln(1+x2)=∑n=1∞(−1)n−1x2nn⇒ln(1−x2)−ln(1+x2)x=−1x∑n=1∞x2nn+1x∑n=1∞(−1)nx2nn=∑n=1∞((−1)n−1)x2n−1n=−2∑n=1∞x2(2n+1)−12n+1=−2∑n=1∞x4n+12n+1andI=−2∑n=1∞1(2n+1)∫01x4n+1dx=−2∑n=1∞1(2n+1)(4n+2)=−∑n=1∞1(2n+1)2Σ1n2=14Σ1n2+Σ1(2n+1)2⇒34Σ1n2=Σ1(2n+1)2⇒34.π26=Σ1(2n+1)2⇒π28=Σ1(2n+1)2⇒∫0π2ln(cosx)sinx=−π28
Terms of Service
Privacy Policy
Contact: info@tinkutara.com