Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 197272 by Erico last updated on 12/Sep/23

How to calculate this integral  ∫^( (π/2)) _( 0)  ((ln(1+sint))/(sint))dt

Howtocalculatethisintegral0π2ln(1+sint)sintdt

Answered by Mathspace last updated on 12/Sep/23

tan((t/2))=x ⇒  I=∫_0 ^1 ((ln(1+((2x)/(1+x^2 ))))/((2x)/(1+x^2 )))((2dx)/(1+x^2 ))  =∫_0 ^1 ((ln(((1+x^2 +2x)/(1+x^2 ))))/x)dx  =∫_0 ^1 ((ln(x+1)^2 −ln(1+x^2 ))/x)dx  =2∫_0 ^1 ((ln(1+x))/x)dx−∫_0 ^1 ((ln(1+x^2 ))/x)dx  (dx/dx)ln(1+x)=(1/(1+x))=Σ_(n=0) ^∞ (−1)^n x^n   ⇒ln(1+x)=Σ_(n=0) ^∞ (((−1)^n )/(n+1))x^(n+1)   =Σ_(n=1) ^∞ (−1)^(n−1) (x^n /n) ⇒  ∫_0 ^1 ((ln(1+x))/x)dx=Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 x^(n−1) dx  =Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 )=η(2)  =(1−2^(1−2) )ξ(2)=(1/2).(π^2 /6)=(π^2 /(12))  ln(1+x^2 )=Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^(2n)  ⇒  ∫_0 ^1 ((ln(1+x^2 ))/x)dx=Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 x^(2n−1) dx  =(1/2)Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 )  =(1/2)(π^2 /(12))=(π^2 /(24)) ⇒  ∫_0 ^(π/2) ((ln(1+sinx))/(sinx))dx  =2.(π^2 /(12))−(π^2 /(24))=((3π^2 )/(24))=(π^2 /8)

tan(t2)=xI=01ln(1+2x1+x2)2x1+x22dx1+x2=01ln(1+x2+2x1+x2)xdx=01ln(x+1)2ln(1+x2)xdx=201ln(1+x)xdx01ln(1+x2)xdxdxdxln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nn+1xn+1=n=1(1)n1xnn01ln(1+x)xdx=n=1(1)n1n01xn1dx=n=1(1)n1n2=η(2)=(1212)ξ(2)=12.π26=π212ln(1+x2)=n=1(1)n1nx2n01ln(1+x2)xdx=n=1(1)n1n01x2n1dx=12n=1(1)n1n2=12π212=π2240π2ln(1+sinx)sinxdx=2.π212π224=3π224=π28

Answered by universe last updated on 12/Sep/23

 I    =  ∫_0 ^(𝛑/2) ((log (1+𝛂sin x) dx)/(sin x))   (dI/d𝛂)  =  ∫_0 ^(𝛑/2) (1/(1+𝛂sin x))dx      (dI/d𝛂)  = ∫_0 ^(𝛑/2  ) ((sec^2  x/2)/(1+tan^2 x/2+2𝛂tan x/2))dx  (dI/d𝛂)  =  ∫_0 ^1 ((2dy)/(y^2 +2𝛂y+1)) = ∫^1 _0 ((2dy)/((y+𝛂)^2 +(1−𝛂^2 )))     (dI/d𝛂) = (2/( (√(1−𝛂^2 ))))tan^(−1) ((y+𝛂)/( (√(1−𝛂^2 )))) ∣_0 ^1     (dI/d𝛂) = (2/( (√(1−𝛂^2 ))))[tan^(−1) ((1−𝛂)/( (√(1−𝛂^2 )))) − tan^(−1) (𝛂/( (√(1−𝛂^2 ))))]   (dI/d𝛂)  =   (2/( (√(1−𝛂^2 ))))tan^(−1) (((1/(√(1−𝛂^2 )))/(1+(1+𝛂)𝛂/1−𝛂^2 )))     ∫(dI/d𝛂) = ∫(2/( (√(1−𝛂^2 ))))tan^(−1) (√((1−𝛂)/(1+𝛂))) d𝛂    let  𝛂 = cos𝛃   ⇒  d𝛂  = −sin 𝛃 d𝛃  I   =   −2∫tan^(−1) ((√((1−cos 𝛃)/(1+cos 𝛃))) )d𝛃  I  =  −2∫(𝛃/2) d𝛃    I   =   −(𝛃^2 /2) +c  I =  −(((cos^(−1) 𝛂)^2  )/2) + c  let 𝛂 = 0  then I = 0  c  = (𝛑^2 /8)    I  =   (𝛑^2 /8) − (((cos^(−1) 𝛂)^2 )/2)    now put 𝛂 = 1  I  =  (𝛑^2 /8)

I=0π/2log(1+αsinx)dxsinxdIdα=0π/211+αsinxdxdIdα=0π/2sec2x/21+tan2x/2+2αtanx/2dxdIdα=012dyy2+2αy+1=012dy(y+α)2+(1α2)dIdα=21α2tan1y+α1α201dIdα=21α2[tan11α1α2tan1α1α2]dIdα=21α2tan1(1/1α21+(1+α)α/1α2)dIdα=21α2tan11α1+αdαletα=cosβdα=sinβdβI=2tan1(1cosβ1+cosβ)dβI=2β2dβI=β22+cI=(cos1α)22+cletα=0thenI=0c=π28I=π28(cos1α)22nowputα=1I=π28

Terms of Service

Privacy Policy

Contact: info@tinkutara.com