All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 197292 by universe last updated on 12/Sep/23
limn→∞∫01nxn−11+xdx=?
Answered by witcher3 last updated on 12/Sep/23
2x⩽1+x⩽2,∀x∈[0,1]⇒nxn−12⩽nxn−11+x⩽nxn−22n2n=12⩽∫01nxn−11+xdx⩽n2(n−1)⇒limn→∞∫01nxn−1(1+x)−1dx=12
Meth2bypart=xn1+x]01+∫01xn(1+x)2dx=12+∫01xn(1+x)2dxbypart2∫01xn(1+x)2dx=14(n+1)+2n+1∫01xn+1(1+x)3dx→0integral→12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com