Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 197323 by Erico last updated on 13/Sep/23

If f(x)=((sin(x))/x)   and S_n (α)=Σ_(k=1) ^n [f(kπ+(π/α))+f(kπ−(π/α))]    (α>1)  Prove that  lim_(n→+∞)  S_n (α)=1−f((π/α))

Iff(x)=sin(x)xandSn(α)=nk=1[f(kπ+πα)+f(kππα)](α>1)Provethatlimn+Sn(α)=1f(πα)

Answered by witcher3 last updated on 14/Sep/23

S_n (a)=Σ_1 ^n (f(kπ+(π/a))−f(kπ−(π/a)))  T(a)Σ_(k=1) ^n (((−1)^k sin((π/a)))/(kπ+(π/a)))  −T(−a)+T(a)=S_n (a)  T(a)=((sin((π/a)))/π)Σ_(k=1) ^n (((−1)^k )/(k+(1/a)))...cv  Σ(−1)^k ≤2,..(1/(k+(1/a))) decrease cv →0  T(a)..cv  Σ_(k=1) ^∞ (((−1)^k )/(k+(1/a)))=Σ_(k=1) ^∞ (1/(2k+(1/a)))−(1/(2k−1+(1/a)))  =(1/2)Σ_(k=1) ^∞ (1/(k+(1/(2a))))−(1/(k+(1/2)((1/a)−1)))  =(1/2)(Ψ((1/2)((1/a)+1))−Ψ((1/(2a))+1))  S_n (a)=Γ(a)−Γ(−a)  =((sin((π/a)))/(2π))(Ψ((1/2)+(1/(2a)))−Ψ((1/2)−(1/(2a)))−Ψ(1+(1/(2a)))+Ψ(1−(1/(2a))))  =((sin((π/a)))/(2π))(Ψ(1−((1/2)−(1/(2a)))−Ψ((1/2)−(1/(2a)))−2a−Ψ((1/(2a)))+Ψ(1−(1/(2a))))  =((sin((π/a)))/(2π))(πcot(π((1/2)−(1/(2a)))−2a+πcot((π/(2a)))  =((sin((π/a)))/2)(tg((1/(2a)))+cot((1/(2a))))−((sin((π/a)))/(π/a))  =((sin((π/a)))/2)(((cos^2 ((1/(2a)))+sin^2 ((1/(2a))))/(sin((π/(2a)))cos((π/(2a))))))−f((π/a))  =1−f((π/a))

Sn(a)=n1(f(kπ+πa)f(kππa))T(a)nk=1(1)ksin(πa)kπ+πaT(a)+T(a)=Sn(a)T(a)=sin(πa)πnk=1(1)kk+1a...cvΣ(1)k2,..1k+1adecreasecv0T(a)..cvk=1(1)kk+1a=k=112k+1a12k1+1a=12k=11k+12a1k+12(1a1)=12(Ψ(12(1a+1))Ψ(12a+1))Sn(a)=Γ(a)Γ(a)=sin(πa)2π(Ψ(12+12a)Ψ(1212a)Ψ(1+12a)+Ψ(112a))=sin(πa)2π(Ψ(1(1212a)Ψ(1212a)2aΨ(12a)+Ψ(112a))=sin(πa)2π(πcot(π(1212a)2a+πcot(π2a)=sin(πa)2(tg(12a)+cot(12a))sin(πa)πa=sin(πa)2(cos2(12a)+sin2(12a)sin(π2a)cos(π2a))f(πa)=1f(πa)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com