All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 197323 by Erico last updated on 13/Sep/23
Iff(x)=sin(x)xandSn(α)=∑nk=1[f(kπ+πα)+f(kπ−πα)](α>1)Provethatlimn→+∞Sn(α)=1−f(πα)
Answered by witcher3 last updated on 14/Sep/23
Sn(a)=∑n1(f(kπ+πa)−f(kπ−πa))T(a)∑nk=1(−1)ksin(πa)kπ+πa−T(−a)+T(a)=Sn(a)T(a)=sin(πa)π∑nk=1(−1)kk+1a...cvΣ(−1)k⩽2,..1k+1adecreasecv→0T(a)..cv∑∞k=1(−1)kk+1a=∑∞k=112k+1a−12k−1+1a=12∑∞k=11k+12a−1k+12(1a−1)=12(Ψ(12(1a+1))−Ψ(12a+1))Sn(a)=Γ(a)−Γ(−a)=sin(πa)2π(Ψ(12+12a)−Ψ(12−12a)−Ψ(1+12a)+Ψ(1−12a))=sin(πa)2π(Ψ(1−(12−12a)−Ψ(12−12a)−2a−Ψ(12a)+Ψ(1−12a))=sin(πa)2π(πcot(π(12−12a)−2a+πcot(π2a)=sin(πa)2(tg(12a)+cot(12a))−sin(πa)πa=sin(πa)2(cos2(12a)+sin2(12a)sin(π2a)cos(π2a))−f(πa)=1−f(πa)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com