Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 197325 by sonukgindia last updated on 13/Sep/23

Answered by witcher3 last updated on 13/Sep/23

f(f(x))=x^2 −1  if x∈R ∣f^2 (x)=x⇒x^2 −x−1=0  x∈{((1−(√5))/2),((1+(√5))/2)}  f^4 (x)=x⇒(f^2 (x))^2 −1=(x^2 −1)^2 −1=x  ⇔(x+1)((x−1)^2 (x+1)−1)=0  x(x+1)(x^2 −x−1)=0  x∈{0,−1,((1+_− (√5))/2)}  f^2 (0)=−1,f^2 (−1)=0   ∃a≠b ,a,b∉{0,−1} sush that  ,f(0)=a and f^3 (0)=f(−1)=b  because if f(0)=a,a∈{0;−1}  a=0⇒f^2 (0)=0 impissibl  f(0)=−1  ⇒0=f^4 (0)=f^3 (−1)=f(0)⇒f^2 (0)=0 impossible  f(0)=f^3 (0)⇒f^2 (0)=0 impossible  ⇒∃(a≠b) ∉{−1,0}   such f(0)=a and f^3 (0)=f(−1)=b  ⇒f^3 (a)=0  f^4 (a)=f(0)=a   f^4 (b)=b,a and b ∉{((1+_− (√5))/2)}  suppose b∈ ⇒f^4 (b)=b= f(−1)  f^2 (b)=b=f^3 (−1)=f^4 (0)=0  ⇒b=0 impossibl  so we have 6 fixe points for f^4   a,b,0,−1,((1+_− (√5))/2)   impossible we have just 4  f can′t exist

f(f(x))=x21ifxRf2(x)=xx2x1=0x{152,1+52}f4(x)=x(f2(x))21=(x21)21=x(x+1)((x1)2(x+1)1)=0x(x+1)(x2x1)=0x{0,1,1+52}f2(0)=1,f2(1)=0ab,a,b{0,1}sushthat,f(0)=aandf3(0)=f(1)=bbecauseiff(0)=a,a{0;1}a=0f2(0)=0impissiblf(0)=10=f4(0)=f3(1)=f(0)f2(0)=0impossiblef(0)=f3(0)f2(0)=0impossible(ab){1,0}suchf(0)=aandf3(0)=f(1)=bf3(a)=0f4(a)=f(0)=af4(b)=b,aandb{1+52}supposebf4(b)=b=f(1)f2(b)=b=f3(1)=f4(0)=0b=0impossiblsowehave6fixepointsforf4a,b,0,1,1+52impossiblewehavejust4fcantexist

Commented by MathematicalUser2357 last updated on 17/Sep/23

you mean ±

youmean±

Terms of Service

Privacy Policy

Contact: info@tinkutara.com