Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 19736 by ajfour last updated on 15/Aug/17

Commented by ajfour last updated on 15/Aug/17

Q.19699   (solution)  Find r in terms of R (=100)  ∠OXY=30° .

$$\mathrm{Q}.\mathrm{19699}\:\:\:\left(\mathrm{solution}\right) \\ $$$$\mathrm{Find}\:\mathrm{r}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{R}\:\left(=\mathrm{100}\right) \\ $$$$\angle\mathrm{OXY}=\mathrm{30}°\:. \\ $$

Answered by ajfour last updated on 15/Aug/17

Let radius of circle S_2  with centre D  be R=100 (given)  Radius of biggest circle S is 2R  as it passes through O and touch  the circle S internally.  ((DY)/(XD))=sin 30°   ⇒  (R/(XD))=(1/2)  XD=2R, hence  OX=R  OC=2R−r    ....(i)  CP=MX=OXcos 30°  ⇒    CP=((R(√3))/2)     ....(ii)  OP=OM+MP=OXsin 30°+CX  ⇒   OP=(R/2)+r     ....(iii)  As  OC^2 =CP^2 +OP^2    , using (i),    (ii), and (iii) we can write    (2R−r)^2 =((3R^2 )/4)+((R/2)+r)^2   ⇒  (2R−r)^2 −((R/2)+r)^2 =((3R^2 )/4)  or   (((5R)/2))(((3R)/2)−2r)=((3R^2 )/4)        5(3R−4r)=3R        15R−20r=3R         r=((12R)/(20)) =((3R)/5)     As R=100   we get  r=60 .

$$\mathrm{Let}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{S}_{\mathrm{2}} \:\mathrm{with}\:\mathrm{centre}\:\mathrm{D} \\ $$$$\mathrm{be}\:\mathrm{R}=\mathrm{100}\:\left(\mathrm{given}\right) \\ $$$$\mathrm{Radius}\:\mathrm{of}\:\mathrm{biggest}\:\mathrm{circle}\:\mathrm{S}\:\mathrm{is}\:\mathrm{2R} \\ $$$$\mathrm{as}\:\mathrm{it}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{O}\:\mathrm{and}\:\mathrm{touch} \\ $$$$\mathrm{the}\:\mathrm{circle}\:\mathrm{S}\:\mathrm{internally}. \\ $$$$\frac{\mathrm{DY}}{\mathrm{XD}}=\mathrm{sin}\:\mathrm{30}°\:\:\:\Rightarrow\:\:\frac{\mathrm{R}}{\mathrm{XD}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{XD}=\mathrm{2R},\:\mathrm{hence}\:\:\mathrm{OX}=\mathrm{R} \\ $$$$\mathrm{OC}=\mathrm{2R}−\mathrm{r}\:\:\:\:....\left(\mathrm{i}\right) \\ $$$$\mathrm{CP}=\mathrm{MX}=\mathrm{OXcos}\:\mathrm{30}° \\ $$$$\Rightarrow\:\:\:\:\mathrm{CP}=\frac{\mathrm{R}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\:\:\:....\left(\mathrm{ii}\right) \\ $$$$\mathrm{OP}=\mathrm{OM}+\mathrm{MP}=\mathrm{OXsin}\:\mathrm{30}°+\mathrm{CX} \\ $$$$\Rightarrow\:\:\:\mathrm{OP}=\frac{\mathrm{R}}{\mathrm{2}}+\mathrm{r}\:\:\:\:\:....\left(\mathrm{iii}\right) \\ $$$$\mathrm{As}\:\:\mathrm{OC}^{\mathrm{2}} =\mathrm{CP}^{\mathrm{2}} +\mathrm{OP}^{\mathrm{2}} \:\:\:,\:\mathrm{using}\:\left(\mathrm{i}\right), \\ $$$$\:\:\left(\mathrm{ii}\right),\:\mathrm{and}\:\left(\mathrm{iii}\right)\:\mathrm{we}\:\mathrm{can}\:\mathrm{write} \\ $$$$\:\:\left(\mathrm{2R}−\mathrm{r}\right)^{\mathrm{2}} =\frac{\mathrm{3R}^{\mathrm{2}} }{\mathrm{4}}+\left(\frac{\mathrm{R}}{\mathrm{2}}+\mathrm{r}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left(\mathrm{2R}−\mathrm{r}\right)^{\mathrm{2}} −\left(\frac{\mathrm{R}}{\mathrm{2}}+\mathrm{r}\right)^{\mathrm{2}} =\frac{\mathrm{3R}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\mathrm{or}\:\:\:\left(\frac{\mathrm{5R}}{\mathrm{2}}\right)\left(\frac{\mathrm{3R}}{\mathrm{2}}−\mathrm{2r}\right)=\frac{\mathrm{3R}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\mathrm{5}\left(\mathrm{3R}−\mathrm{4r}\right)=\mathrm{3R} \\ $$$$\:\:\:\:\:\:\mathrm{15R}−\mathrm{20r}=\mathrm{3R} \\ $$$$\:\:\:\:\:\:\:\mathrm{r}=\frac{\mathrm{12R}}{\mathrm{20}}\:=\frac{\mathrm{3R}}{\mathrm{5}}\:\:\: \\ $$$$\mathrm{As}\:\mathrm{R}=\mathrm{100}\:\:\:\mathrm{we}\:\mathrm{get}\:\:\mathrm{r}=\mathrm{60}\:. \\ $$

Commented by Tinkutara last updated on 15/Aug/17

Thank you very much Sir! Thanks for  your efforts!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}!\:\mathrm{Thanks}\:\mathrm{for} \\ $$$$\mathrm{your}\:\mathrm{efforts}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com