Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 197360 by hardmath last updated on 14/Sep/23

Find:  ∫_0 ^( ∞)  sin^2  ( (√x) ) e^(−x)  dx = ?

Find:0sin2(x)exdx=?

Answered by Mathspace last updated on 15/Sep/23

I=∫_0 ^∞ ((1−cos(2(√x)))/2) e^(−x) dx  =(1/2)∫_0 ^∞ e^(−x) dx−(1/2)∫_0 ^∞ cos(2(√x))e^(−x) dx  ∫_0 ^∞ e^(−x) dx=[−e^(−x) ]_0 ^∞ =1  ∫_0 ^∞ cos(2(√x))e^(−x) dx    ((√x)=t)  =∫_0 ^∞ cos(2t)e^(−t^2 ) (2t)dt  =[−e^(−x^2 ) cos(2t)]_0 ^∞ −2∫_0 ^∞ e^(−t^2 )  sin(2t)dt  =1−2∫_0 ^∞  e^(−t^2 ) sin(2t)dt  but ∫_0 ^∞ e^(−t^2 ) sin(2t)dt  =Im(∫_0 ^∞  e^(−t^2 +2it) dt)  and ∫_0 ^∞ e^(−t^2 +2it) dt=∫_0 ^∞ e^(−(t^2 −2it +i^2 −i^2 ))  dt  =∫_0 ^∞  e^(−(t−i)^2 +1) dt   (t−i=y)  =e ∫_(−i) ^∞  e^(−y^2 ) dy=eλ_0 erf(−i)⇒  ∫_0 ^∞ sin^2 ((√x))e^(−x) dx  =(1/2)−(1/2){1−2 Im(eλ_o erf(−i)}  =Im(eλ_0 erf(−i)}  ....be continued...

I=01cos(2x)2exdx=120exdx120cos(2x)exdx0exdx=[ex]0=10cos(2x)exdx(x=t)=0cos(2t)et2(2t)dt=[ex2cos(2t)]020et2sin(2t)dt=120et2sin(2t)dtbut0et2sin(2t)dt=Im(0et2+2itdt)and0et2+2itdt=0e(t22it+i2i2)dt=0e(ti)2+1dt(ti=y)=eiey2dy=eλ0erf(i)0sin2(x)exdx=1212{12Im(eλoerf(i)}=Im(eλ0erf(i)}....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com