All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 197360 by hardmath last updated on 14/Sep/23
Find:∫0∞sin2(x)e−xdx=?
Answered by Mathspace last updated on 15/Sep/23
I=∫0∞1−cos(2x)2e−xdx=12∫0∞e−xdx−12∫0∞cos(2x)e−xdx∫0∞e−xdx=[−e−x]0∞=1∫0∞cos(2x)e−xdx(x=t)=∫0∞cos(2t)e−t2(2t)dt=[−e−x2cos(2t)]0∞−2∫0∞e−t2sin(2t)dt=1−2∫0∞e−t2sin(2t)dtbut∫0∞e−t2sin(2t)dt=Im(∫0∞e−t2+2itdt)and∫0∞e−t2+2itdt=∫0∞e−(t2−2it+i2−i2)dt=∫0∞e−(t−i)2+1dt(t−i=y)=e∫−i∞e−y2dy=eλ0erf(−i)⇒∫0∞sin2(x)e−xdx=12−12{1−2Im(eλoerf(−i)}=Im(eλ0erf(−i)}....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com