Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 197396 by sonukgindia last updated on 16/Sep/23

Commented by Frix last updated on 16/Sep/23

We had this several times before.  t=(√(tan x)) ⇒ 2∫(t^2 /(t^4 +1))dt  which can be solved by decomposing

Wehadthisseveraltimesbefore.t=tanx2t2t4+1dtwhichcanbesolvedbydecomposing

Answered by universe last updated on 16/Sep/23

 2I  = ∫((√(tan x)) + (√(cot x)) )_(I_1 ) dx + ∫((√(tan x)) − (√(cot x )) )dx_(I_2 )   I_1   =  (√2)∫((sin x + cos x)/( (√(2sin xcos x))))dx  I_1  =  (√2)∫(((sin x +cos x))/( (√(1−(sin x − cos x)^2 ))))dx  let   sin x − cos x = t  ⇒ (cos x +sin x)dx=dt    I_1  = (√2)∫(dt/( (√(1−t^2 )))) = (√2)sin^(−1) t + C_1     I_(1 )  =  (√2) sin^(−1) (sin x − cos x) + C_1   now   I_(2 ) = −(√2)∫(((−sin x +cos x))/( (√((sin x + cos x)^2 −1))))dx    let sin x + cos x = y    (cos x−sin x)dx= dy  I_2  = −(√2) ∫(dy/( (√(y^2 −1))))   I_2   =  −(√2) cosh^(−1) y + C_2     I_(2 )   =  −(√2) cosh^(−1) (sin x+cos x)  + C_2    2I  =  I_1  + I_2   I =(1/( (√2)))[sin^(−1) (sinx−cosx)−cosh^(−1) (sinx+cosx)+ C

2I=(tanx+cotx)dxI1+(tanxcotx)dxI2I1=2sinx+cosx2sinxcosxdxI1=2(sinx+cosx)1(sinxcosx)2dxletsinxcosx=t(cosx+sinx)dx=dtI1=2dt1t2=2sin1t+C1I1=2sin1(sinxcosx)+C1nowI2=2(sinx+cosx)(sinx+cosx)21dxletsinx+cosx=y(cosxsinx)dx=dyI2=2dyy21I2=2cosh1y+C2I2=2cosh1(sinx+cosx)+C22I=I1+I2I=12[sin1(sinxcosx)cosh1(sinx+cosx)+C

Commented by MM42 last updated on 16/Sep/23

 ⋛

Commented by universe last updated on 16/Sep/23

 ⋛

Terms of Service

Privacy Policy

Contact: info@tinkutara.com