Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 197409 by mathlove last updated on 16/Sep/23

Commented by mathlove last updated on 16/Sep/23

any solution is corect and   any one is ancorect

anysolutioniscorectandanyoneisancorect

Commented by MM42 last updated on 16/Sep/23

1=(√1)=(√(−1×−1))=(√(−1))×(√(−1))=i×i=−1

1=1=1×1=1×1=i×i=1

Commented by mahdipoor last updated on 16/Sep/23

(√e^(2a+bi) )×(√e^(2x+yi) )=^? (√(e^(2a+bi) ×e^(2x+yi) ))  e^(a+b_n i) ×e^(x+y_n i) =^? (√e^(2(a+x)+(b+y)i) )  e^((a+x)+(b_n +y_n )i) =^? e^((a+x)+(b_n +y_n )i)   ⇒b_n +y_n   must same for L and R  ϕ_n =(ϕ/2) and  (ϕ/2)+π  (√(−1))×(√(−1))=(√(−1×−1))  ⇒(√e^(πi) )×(√e^(πi) )=(√e^(2πi) )  ⇒e^((π/2)i) ×e^((π/2)i) =e^((π+π)i          )   ⇒−1=1

e2a+bi×e2x+yi=?e2a+bi×e2x+yiea+bni×ex+yni=?e2(a+x)+(b+y)ie(a+x)+(bn+yn)i=?e(a+x)+(bn+yn)ibn+ynmustsameforLandRφn=φ2andφ2+π1×1=1×1eπi×eπi=e2πieπ2i×eπ2i=e(π+π)i1=1

Commented by Alleddawi last updated on 17/Sep/23

The second mathematical expression is correct.  Because (√a)×(√b)=(√(a×b ))  , if at most one of a and b is negative.

Thesecondmathematicalexpressioniscorrect.Becausea×b=a×b,ifatmostoneofaandbisnegative.

Answered by Frix last updated on 16/Sep/23

x_j =r_j e^(iθ_j ) ; r_j ≥0∧−π<θ_j ≤π  x_3 =x_1 x_2 =r_1 e^(iθ_1 ) r_2 e^(iθ_2 ) =r_1 r_2 e^(i(θ_1 +θ_2 )) =r_3 e^(iθ_3 ^� )   x_4 =x^k =(re^(iθ) )^k =r^k e^(ikθ) =r_4 e^(iθ_4 ^� )   We must have −π<θ_j ≤π ⇒  θ_j =mod (θ_j ^� , π) −(π/2)(1−sign sin θ_j ^� )       [θ_j ^� =2nπ ⇒ θ_j =0]    (√(−4))×(√(−9))=(√(4e^(iπ) ))×(√(9e^(iπ) ))=(√4)e^(i(π/2)) (√9)e^(i(π/2)) =  =2×3×e^(i(π/2)+i(π/2)) =6e^(iπ) =−6  (√((−4)(−9)))=(√(4e^(iπ) ×9e^(iπ) ))=(√(36e^(2iπ) ))=(√(36e^0 ))=  =(√(36))=6    All depends on the correct execution of the  rules. If you don′t know the rules, learn them.  Sadly on the www there is more opinion than  knowledge. The set of rules was made to get  consistency.

xj=rjeiθj;rj0π<θjπx3=x1x2=r1eiθ1r2eiθ2=r1r2ei(θ1+θ2)=r3eiθ¯3x4=xk=(reiθ)k=rkeikθ=r4eiθ¯4Wemusthaveπ<θjπθj=mod(θ¯j,π)π2(1signsinθ¯j)[θ¯j=2nπθj=0]4×9=4eiπ×9eiπ=4eiπ29eiπ2==2×3×eiπ2+iπ2=6eiπ=6(4)(9)=4eiπ×9eiπ=36e2iπ=36e0==36=6Alldependsonthecorrectexecutionoftherules.Ifyoudontknowtherules,learnthem.Sadlyonthewwwthereismoreopinionthanknowledge.Thesetofruleswasmadetogetconsistency.

Commented by Frix last updated on 16/Sep/23

Btw the reason for −π<θ≤π is to get useful  results for conjugated numbers  (√(2+2(√3)i))=(√3)+i  (√(2−2(√3)i))=(√3)−i  2+2(√3)i=4e^(i(π/3)) ; (√(4e^(i(π/3)) ))=2e^(i(π/6)) =(√3)+i  2−2(√3)i=4e^(−i(π/3)) ; (√(4e^(−i(π/3)) ))=2e^(−i(π/6)) =(√3)−i  If we′d use 0≤θ<2π  2−2(√3)i=4e^(i((5π)/3)) ; (√(4e^(i((5π)/3)) ))=2e^(i((5π)/6)) =−(√3)+i

Btwthereasonforπ<θπistogetusefulresultsforconjugatednumbers2+23i=3+i223i=3i2+23i=4eiπ3;4eiπ3=2eiπ6=3+i223i=4eiπ3;4eiπ3=2eiπ6=3iIfweduse0θ<2π223i=4ei5π3;4ei5π3=2ei5π6=3+i

Commented by mathlove last updated on 17/Sep/23

thanks for all

thanksforall

Terms of Service

Privacy Policy

Contact: info@tinkutara.com