Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 197437 by dimentri last updated on 17/Sep/23

     { ((2sin (2x+y) sin y = cos 2x)),((sin 2x−sin 2y=(√2))) :}    Find the solution

{2sin(2x+y)siny=cos2xsin2xsin2y=2Findthesolution

Answered by Frix last updated on 17/Sep/23

x=tan^(−1)  u ∧y=tan^(−1)  v  The equations are then easy to solve  ⇒  x=n_1 π+((3π)/8)∧y=n_2 π−(π/8)  ∨  x=n_1 π+(π/8)∧y=n_2 π−((3π)/8)  For 0≤x, y<π  x=((3π)/8)∧y=((7π)/8)∨x=(π/8)∧y=((5π)/8)

x=tan1uy=tan1vTheequationsaretheneasytosolvex=n1π+3π8y=n2ππ8x=n1π+π8y=n2π3π8For0x,y<πx=3π8y=7π8x=π8y=5π8

Answered by cortano12 last updated on 17/Sep/23

 solution is      x = { (π/8)+k.π ; ((3π)/8)+ℓ.π }     y = {−(π/8)+k.π ; ((5π)/8)+ℓ.π }

solutionisx={π8+k.π;3π8+.π}y={π8+k.π;5π8+.π}

Answered by MM42 last updated on 17/Sep/23

cos2x−cos2(x+y)=cos2x⇒2(x+y)=kπ+(π/2)  2cos^2 (x+y)−1=0⇒cos(x+y)=±((√2)/2)  ⇒x+y=kπ+(π/4) ; ...,−((3π)/4),(π/4),((5π)/4),...  2sin(x−y)cos(x+y)=(√2)  ⇒sin(x−y)=±1  ⇒x−y=kπ+(π/2) ; −(π/2) ,(π/2),((3π)/2),...   ⇒x=kπ+((3π)/8)      &  y=kπ−(π/8)

cos2xcos2(x+y)=cos2x2(x+y)=kπ+π22cos2(x+y)1=0cos(x+y)=±22x+y=kπ+π4;...,3π4,π4,5π4,...2sin(xy)cos(x+y)=2sin(xy)=±1xy=kπ+π2;π2,π2,3π2,...x=kπ+3π8&y=kππ8

Answered by witcher3 last updated on 17/Sep/23

2sin(2x+y)sin(y)  cos(a)−cos(b)=−2sin(((a−b)/2))sin(((a+b)/2))  ⇒2sn(2x+y)sin(y)=cos(2x)−cos(2x+2y)=cos(2x)  ⇒cos(2x+2y)=0⇒2x+2y=(π/2)+nπ  sin(2x)−sin(2y)=(√2)  ⇒sin((π/2)+nπ−2y)−sin(2y)=(√2)  ⇒cos(nπ−2y)−sin(2y)=(√2)  ⇒(−1)^n cos(2y)−sin(2y)=(√2)  n=2k⇒  cos(2y)−sin(2y)=(√2)  ⇒cos(2y+(π/4))=1  ⇒2y+(π/4)=2kπ⇒y=−(π/8)+mπ,x=((3π)/8)+kπ  n=2k+1  2y−(π/4)=π+2kπ  ⇒y=((5π)/8)+kπ  x=−(π/8)+nπ

2sin(2x+y)sin(y)cos(a)cos(b)=2sin(ab2)sin(a+b2)2sn(2x+y)sin(y)=cos(2x)cos(2x+2y)=cos(2x)cos(2x+2y)=02x+2y=π2+nπsin(2x)sin(2y)=2sin(π2+nπ2y)sin(2y)=2cos(nπ2y)sin(2y)=2(1)ncos(2y)sin(2y)=2n=2kcos(2y)sin(2y)=2cos(2y+π4)=12y+π4=2kπy=π8+mπ,x=3π8+kπn=2k+12yπ4=π+2kπy=5π8+kπx=π8+nπ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com