All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 197461 by Erico last updated on 18/Sep/23
Provethat:∙∫0xlntt2−1dt=∫0π2arctan(xtanθ)dθ∙∫1xxlntt2−1arctantdt=π8∫0πarctan(12(x−1x)sint)dt
Answered by witcher3 last updated on 18/Sep/23
f(x)=∫0xln(t)t2−1dt,f(0)=0f′(x)=ln(x)x2−1g(x)=∫0π2arctan(xtan(a))dag(0)=0g′(x)=∫0π2tan(a)1+(xtan(a))2da=∫0π2sin(a)cos(a)cos2(a)+x2sin2(a)dx=∫0π2sin(2a)dacos(2a)+1+x2(1−cos(2a),cos(2a)=y=−12∫1−1dy1+x2+(1−x2)y=12(1−x2).{ln[(1+x2)+(1−x2)y]}−1112(1−x2)ln(22x2)=ln(x)x2−1=f′(x)f′(x)=g′(x),f(0)=g(0)⇒f(x)=g(x)(2)H(x)=∫1xxln(t)t2−1tan−1(t)dtt→1t⇒H(x)=∫1xxln(t)t2−1(π2−tan−1(t))dt,∀x∈R+∗H(x)=π2∫1xxln(t)t2−1dt−H(x)H(x)=π4∫1xxln(t)t2−1dt=π4(∫0xln(t)t2−1dt−∫01xln(t)t2−1dt)=π4(f(x)−f(1x))=π4(g(x)−g(1x))=π4tan−1(xtan(a))−π4tan−(tan(a)x)tan−1(a)−tan−1(b)=tan−1(a−b1+ab),π4∫0π2(tan−((x−1x)tan(a)1+tan2(a)))da=π4∫0π2tan−1((x−1x)sin(2a)2)da2a→a=π8∫0πtan−1(12(x−1x)sin(a))da
Terms of Service
Privacy Policy
Contact: info@tinkutara.com