Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 197461 by Erico last updated on 18/Sep/23

Prove that:  •∫^( x) _( 0) ((lnt)/(t^2 −1))dt=∫^( (π/2)) _( 0) arctan(xtanθ)dθ  •  ∫^( x) _( (1/x)) ((lnt)/(t^2 −1))arctant dt=(π/8)∫^( π) _( 0) arctan((1/2)(x−(1/x))sint)dt

Provethat:0xlntt21dt=0π2arctan(xtanθ)dθ1xxlntt21arctantdt=π80πarctan(12(x1x)sint)dt

Answered by witcher3 last updated on 18/Sep/23

f(x)=∫_0 ^x ((ln(t))/(t^2 −1))dt,f(0)=0  f′(x)=((ln(x))/(x^2 −1))  g(x)=∫_0 ^(π/2) arctan(xtan (a))da  g(0)=0  g′(x)=∫_0 ^(π/2) ((tan(a))/(1+(xtan(a))^2 ))da  =∫_0 ^(π/2) ((sin(a)cos(a))/(cos^2 (a)+x^2 sin^2 (a)))dx  =∫_0 ^(π/2) ((sin(2a)da)/(cos(2a)+1+x^2 (1−cos(2a))),cos(2a)=y  =−(1/2)∫_1 ^(−1) (dy/(1+x^2 +(1−x^2 )y))  =(1/(2(1−x^2 ))).{ln [(1+x^2 )+(1−x^2 )y]}_(−1) ^1   (1/(2(1−x^2 )))ln((2/(2x^2 )))=((ln(x))/(x^2 −1))=f′(x)  f′(x)=g′(x) ,f(0)=g(0)⇒f(x)=g(x)  (2)H(x)=∫_(1/x) ^x ((ln(t))/(t^2 −1))tan^(−1) (t)dt  t→(1/t)⇒H(x)=∫_(1/x) ^x ((ln(t))/(t^2 −1))((π/2)−tan^(−1) (t))dt,∀x∈R_+ ^∗   H(x)=(π/2)∫_(1/x) ^x ((ln(t))/(t^2 −1))dt−H(x)  H(x)=(π/4)∫_(1/x) ^x ((ln(t))/(t^2 −1))dt=(π/4)(∫_0 ^x ((ln(t))/(t^2 −1))dt−∫_0 ^(1/x) ((ln(t))/(t^2 −1))dt)  =(π/4)(f(x)−f((1/x)))=(π/4)(g(x)−g((1/x)))  =(π/4)tan^(−1) (xtan(a))−(π/4)tan^− (((tan(a))/x))  tan^(−1) (a)−tan^(−1) (b)=tan^(−1) (((a−b)/(1+ab))),  (π/4)∫_0 ^(π/2) (tan^− ((((x−(1/x))tan (a))/(1+tan^2 (a)))))da  =(π/4)∫_0 ^(π/2) tan^(−1) ((x−(1/x))((sin(2a))/2))da  2a→a  =(π/8)∫_0 ^π tan^(−1) ((1/2)(x−(1/x))sin(a))da

f(x)=0xln(t)t21dt,f(0)=0f(x)=ln(x)x21g(x)=0π2arctan(xtan(a))dag(0)=0g(x)=0π2tan(a)1+(xtan(a))2da=0π2sin(a)cos(a)cos2(a)+x2sin2(a)dx=0π2sin(2a)dacos(2a)+1+x2(1cos(2a),cos(2a)=y=1211dy1+x2+(1x2)y=12(1x2).{ln[(1+x2)+(1x2)y]}1112(1x2)ln(22x2)=ln(x)x21=f(x)f(x)=g(x),f(0)=g(0)f(x)=g(x)(2)H(x)=1xxln(t)t21tan1(t)dtt1tH(x)=1xxln(t)t21(π2tan1(t))dt,xR+H(x)=π21xxln(t)t21dtH(x)H(x)=π41xxln(t)t21dt=π4(0xln(t)t21dt01xln(t)t21dt)=π4(f(x)f(1x))=π4(g(x)g(1x))=π4tan1(xtan(a))π4tan(tan(a)x)tan1(a)tan1(b)=tan1(ab1+ab),π40π2(tan((x1x)tan(a)1+tan2(a)))da=π40π2tan1((x1x)sin(2a)2)da2aa=π80πtan1(12(x1x)sin(a))da

Terms of Service

Privacy Policy

Contact: info@tinkutara.com