All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 197464 by universe last updated on 18/Sep/23
Answered by witcher3 last updated on 19/Sep/23
claim(a+b)6(ab)2⩾32(a2+b2)....P,bysymetria⩾ba=tb,t∈]0,1](P)⇔∀t∈[0,1[(1+t)6⩾32t2(1+t2)⇔t6+6t5−17t4+20t3−17t2+6t+1⩾0⇔t3+1t3+6(t2+1t2)−17(t+1t)+20y=t+1t⇒y∈[2,∞[=I⇔∀y∈Iy3+6y2−20y+8⩾0(y−2)(y2+8y−4)⩾0Truey>2y2+8y−4=y2−4+8y⩾4−4+8y⩾16True⇒(P)True⇒∀(a,b)∈R+(a1+a2)6(a1a2)4⩾32(a12+a22)2∑cyc(a1+a2)6(a1a2)4⩾32∑cyc(a12+a22)S={ai,i∈[1,n]},an+1=a1⇒∑ni=1(ai+ai+1)2(aiai+1)2⩾32∑n+1i=1(ai2+ai+12)=32.2∑ni=1ai2∑cyc(a1+a2)6a12a22⩾64∑ni=1ai2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com