Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 197464 by universe last updated on 18/Sep/23

Answered by witcher3 last updated on 19/Sep/23

claim  (((a+b)^6 )/((ab)^2 ))≥32(a^2 +b^2 )....P,by symetri a≥b  a=tb,t∈]0,1]  (P)⇔∀t∈[0,1[(1+t)^6 ≥32t^2 (1+t^2 )  ⇔t^6 +6t^5 −17t^4 +20t^3 −17t^2 +6t+1≥0  ⇔t^3 +(1/t^3 )+6(t^2 +(1/t^2 ))−17(t+(1/t))+20  y=t+(1/t)⇒y∈[2,∞[=I  ⇔∀y∈I y^3 +6y^2 −20y+8≥0  (y−2)(y^2 +8y−4)≥0  True y>2  y^2 +8y−4=y^2 −4+8y≥4−4+8y≥16  True⇒(P) True  ⇒∀(a,b)∈R_+ (((a_1 +a_2 )^6 )/((a_1 a_2 )^4 ))≥32(a_1 ^2 +a_2 ^2 )^2   Σ_(cyc) (((a_1 +a_2 )^6 )/((a_1 a_2 )^4 ))≥32Σ_(cyc) (a_1 ^2 +a_2 ^2 )  S={a_i ,i∈[1,n]},a_(n+1) =a_1   ⇒Σ_(i=1) ^n (((a_i +a_(i+1) )^2 )/((a_i a_(i+1) )^2 ))≥32Σ_(i=1) ^(n+1) (a_i ^2 +a_(i+1) ^2 )=32.2Σ_(i=1) ^n a_i ^2   Σ_(cyc) (((a_1 +a_2 )^6 )/(a_1 ^2 a_2 ^2 ))≥64Σ_(i=1) ^n a_i ^2

claim(a+b)6(ab)232(a2+b2)....P,bysymetriaba=tb,t]0,1](P)t[0,1[(1+t)632t2(1+t2)t6+6t517t4+20t317t2+6t+10t3+1t3+6(t2+1t2)17(t+1t)+20y=t+1ty[2,[=IyIy3+6y220y+80(y2)(y2+8y4)0Truey>2y2+8y4=y24+8y44+8y16True(P)True(a,b)R+(a1+a2)6(a1a2)432(a12+a22)2cyc(a1+a2)6(a1a2)432cyc(a12+a22)S={ai,i[1,n]},an+1=a1ni=1(ai+ai+1)2(aiai+1)232n+1i=1(ai2+ai+12)=32.2ni=1ai2cyc(a1+a2)6a12a2264ni=1ai2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com