Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 197525 by mokys last updated on 20/Sep/23

∫ ((tanx))^(1/n)  dx

tanxndx

Answered by Frix last updated on 20/Sep/23

t=((tan x))^(1/n)  ⇒   n∫(t^n /(t^(2n) +1))dt  I think this should be possible using the  Hypergeometric Function _2 F_1  (a, b; c, x)

t=tanxnntnt2n+1dtIthinkthisshouldbepossibleusingtheHypergeometricFunction2F1(a,b;c,x)

Commented by Frix last updated on 20/Sep/23

Woframalpha gives  n∫(t^n /(t^(2n) +1))dt=((nt^(n+1) )/(n+1)) _2 F_1  (1, ((n+1)/(2n)); ((3n+1)/(2n)), −t^(2n) ) +C

Woframalphagivesntnt2n+1dt=ntn+1n+12F1(1,n+12n;3n+12n,t2n)+C

Commented by mokys last updated on 20/Sep/23

yes sir bat how can to take this solution ?

yessirbathowcantotakethissolution?

Answered by witcher3 last updated on 21/Sep/23

y=tan(x)  ∫_0 ^x (t^(1/n) /(1+t^2 ))dt=f(x)  =Σ_(k≥0) (−1)^k ∫_0 ^x t^(2k+(1/n)) dt  =(1/2)x^((1/n)+1) ((2/(1+(1/n)))+Σ_(k≥1) (((−1)^k )/(k+(1/2)+(1/(2n))))x^(2k) )  =(1/2)x^((1/n)+1) ((2/(1+(1/n)))+Σ_(k≥1) (((−x^2 )^n )/(k!)).((k!.Γ(k+(1/2)+(1/(2n))))/(Γ(k+(3/2)+(1/(2n)))))))  =((Γ(k+(1/2)+(1/(2n))))/(Γ((1/2)+(1/(2n)))))=((1/2)+(1/(2n)))_((k))   ((Γ(k+(3/2)+(1/(2n))))/(Γ((1/2)+(1/(2n)))))=((1/2)+(1/(2n)))((3/2)+(1/(2n)))_((k))   =(x^((1/n)+1) /2)((2/(1+(1/n)))+Σ(((−x^2 )^k )/(k!)).(((1)_k ((1/2)+(1/(2n)))_k Γ((1/(2n))+(1/2)))/(((3/2)+(1/(2n)))_k Γ((1/2)+(1/(2n)))((1/(2n))+(1/2)))))  =(x^((1/n)+1) /2)((2/(1+(1/n)))+Σ(((−x^2 )^k )/(k!)).((((1/(2n))+(1/2))_k (1)_k )/(((3/2)+(1/(2n)))_k ((1/(2n))+(1/2)))))+c  =(x^((1/n)+1) /2)((1/((1/(2n))+(1/2)))+(1/((1/(2n))+(1/2)))Σ_(k≥0) (((1)_k ((1/(2n))+(1/2))_k )/(((3/2)+(1/(2n)))_k )).(((−x^2 )^k )/(k!)))+c  =(n/(n+1))x^((1/n)+1) (1+Σ_(k≥0) (((1)_k ((1/(2n))+(1/2))_k )/(((3/2)+(1/(2n)))_k )).(((−x^2 )^k )/(k!)))+c  =((nx^((1/n)+1) )/(n+1))._2 F_1 (1,((n+1)/(2n));((3n+1)/(2n));−x^2 )+c,x=tan(t)

y=tan(x)0xt1n1+t2dt=f(x)=k0(1)k0xt2k+1ndt=12x1n+1(21+1n+k1(1)kk+12+12nx2k)=12x1n+1(21+1n+k1(x2)nk!.k!.Γ(k+12+12n)Γ(k+32+12n)))=Γ(k+12+12n)Γ(12+12n)=(12+12n)(k)Γ(k+32+12n)Γ(12+12n)=(12+12n)(32+12n)(k)=x1n+12(21+1n+Σ(x2)kk!.(1)k(12+12n)kΓ(12n+12)(32+12n)kΓ(12+12n)(12n+12))=x1n+12(21+1n+Σ(x2)kk!.(12n+12)k(1)k(32+12n)k(12n+12))+c=x1n+12(112n+12+112n+12k0(1)k(12n+12)k(32+12n)k.(x2)kk!)+c=nn+1x1n+1(1+k0(1)k(12n+12)k(32+12n)k.(x2)kk!)+c=nx1n+1n+1.2F1(1,n+12n;3n+12n;x2)+c,x=tan(t)

Commented by mokys last updated on 21/Sep/23

thank you sir

thankyousir

Commented by witcher3 last updated on 21/Sep/23

you are welcom   have You the name if the files   withe[Qustion ∫_0 ^∞ (1/(x^2 +a^2    )).(dx/(ln^2 (x)+π^2 ))

youarewelcomhaveYouthenameifthefileswithe[Qustion01x2+a2.dxln2(x)+π2

Commented by mokys last updated on 22/Sep/23

the name of files is [ nodal arena ] and is iraqi book

thenameoffilesis[nodalarena]andisiraqibook

Commented by witcher3 last updated on 23/Sep/23

can′t find this one

cantfindthisone

Terms of Service

Privacy Policy

Contact: info@tinkutara.com