Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 197541 by a.lgnaoui last updated on 20/Sep/23

Montrer que       x=((an+bm)/(m+n))

Montrerquex=an+bmm+n

Commented by a.lgnaoui last updated on 20/Sep/23

Commented by a.lgnaoui last updated on 21/Sep/23

Commented by a.lgnaoui last updated on 21/Sep/23

Answered by HeferH last updated on 20/Sep/23

 ((x−a)/(b−x)) = (m/n)     xn−an = bm−mx   x(n+m) = an+bm   x = ((an+bm)/(m+n))

xabx=mnxnan=bmmxx(n+m)=an+bmx=an+bmm+n

Answered by a.lgnaoui last updated on 21/Sep/23

propriete des triangles semblables:  (meme angle(𝛂) et 2 cotes paraleles)  ((x−a)/m)=((b−x)/n)    ⇒  m(b−x)=n(x−a)  (m+n)x=an+bm    x=((an+bm)/(m+n))

proprietedestrianglessemblables:(memeangle(α)et2cotesparaleles)xam=bxnm(bx)=n(xa)(m+n)x=an+bmx=an+bmm+n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com