Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 197585 by Erico last updated on 23/Sep/23

f  (x)=f((1/x))  ⇒ f(x)=?

f(x)=f(1x)f(x)=?

Answered by EdwarT last updated on 24/Sep/23

−(1/x^2 )

1x2

Answered by Erico last updated on 24/Sep/23

May be like this  f(x)=2(√x)cos(((√3)/2)lnx−(π/3))

Maybelikethisf(x)=2xcos(32lnxπ3)

Answered by Frix last updated on 24/Sep/23

For x>0  f(x)=2(√x)sin ((2π+3(√3)ln x)/( 6))

Forx>0f(x)=2xsin2π+33lnx6

Answered by witcher3 last updated on 24/Sep/23

f′(x)=f((1/x))  f′′(x)=−(1/x^2 )f′((1/x))=−(1/x^2 )f(x)  ⇔x^2 f′′(x)+f(x)=0  f(x)=x^r   ⇒(r(r−1)+1)x^r =0  ⇒r^2 −r+1=0  r=((1+i(√3))/2),((1−i(√3))/2)  f(x)=x^(1/2) (ax^(i/( 2(√3))) +bx^(−(i/(2 (√3)))) )  =(√x)(asin(((ln(x))/(2 ))(√3))+bcos(((ln(x))/2)(√3))    f′(x)=f((1/x))  ⇒  (1/( (√x)))(((a/2)−(b/( 2))(√3))sin(((ln(x))/(2 ))](√3))+((b/2)+(a/( 2))(√3))cos(((ln(x))/(2 ))(√3)))  =(1/( (√x)))(asin(((ln((1/x)))/( 2))(√3))+bcos(((ln((1/x)))/2)(√3))),∀x>0  ⇒(a/2)−(b/( 2))(√3)=−a  (b/2)+(a/( 2))(√3)=b  b=a(√3)  f(x)=a(√x)(sin(((ln(x)(√3))/2))+(√3)cos(((ln(x)(√3))/2)))  =2a(√x)(sin(((ln(x)(√3))/2)+(π/3))),a∈R

f(x)=f(1x)f(x)=1x2f(1x)=1x2f(x)x2f(x)+f(x)=0f(x)=xr(r(r1)+1)xr=0r2r+1=0r=1+i32,1i32f(x)=x12(axi23+bxi23)=x(asin(ln(x)23)+bcos(ln(x)23)f(x)=f(1x)1x((a2b23)sin(ln(x)2]3)+(b2+a23)cos(ln(x)23))=1x(asin(ln(1x)23)+bcos(ln(1x)23)),x>0a2b23=ab2+a23=bb=a3f(x)=ax(sin(ln(x)32)+3cos(ln(x)32))=2ax(sin(ln(x)32+π3)),aR

Terms of Service

Privacy Policy

Contact: info@tinkutara.com