Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 1976 by 123456 last updated on 27/Oct/15

f:R→R  g:R→R  f(x+y)=f(x)g(x)+f(y)g(y)  g(x+y)=f(x)f(y)+g(x)g(y)  [f(x)]^2 +[g(x)]^2 =?  [f(x)+g(y)][g(x)+f(y)]=??  f(x)=???  g(x)=????

f:RRg:RRf(x+y)=f(x)g(x)+f(y)g(y)g(x+y)=f(x)f(y)+g(x)g(y)[f(x)]2+[g(x)]2=?[f(x)+g(y)][g(x)+f(y)]=??f(x)=???g(x)=????

Commented by prakash jain last updated on 27/Oct/15

x=y=0  f(0)=2f(0)g(0)⇒f(0)=0 or g(0)=(1/2)  g(0)=f^2 (0)+g^2 (0)  Four solution for f(0), g(0)  f(0)=0, g(0)=0   f(0)=0, g(0)=1.......(A)  f(0)=(1/2), g(0)=(1/2), f(0)=−(1/2), g(0)=(1/2)......(B)  y=0  f(x)=f(x)g(x)+f(0)g(0)  f(x)[1−g(x)]=f(0)g(0)  f(x)=((f(0)g(0))/(1−g(x)))........(1)  g(x)=f(x)f(0)+g(x)g(0)  subtitute f(x) from 1 above  g(x)=((f(0)g(0))/(1−g(x)))+g(x)f(0)    .....(2)  ⇒g(x)=k_1  (constant)  if g(x) is not constant then g(x)≠1 and (2)  can only be solved with constant g(x) values.  If g(x)=k_1 ⇒f(x)=k_2   continued in answer

x=y=0f(0)=2f(0)g(0)f(0)=0org(0)=12g(0)=f2(0)+g2(0)Foursolutionforf(0),g(0)f(0)=0,g(0)=0f(0)=0,g(0)=1.......(A)f(0)=12,g(0)=12,f(0)=12,g(0)=12......(B)y=0f(x)=f(x)g(x)+f(0)g(0)f(x)[1g(x)]=f(0)g(0)f(x)=f(0)g(0)1g(x)........(1)g(x)=f(x)f(0)+g(x)g(0)subtitutef(x)from1aboveg(x)=f(0)g(0)1g(x)+g(x)f(0).....(2)g(x)=k1(constant)ifg(x)isnotconstanttheng(x)1and(2)canonlybesolvedwithconstantg(x)values.Ifg(x)=k1f(x)=k2continuedinanswer

Commented by Rasheed Soomro last updated on 28/Oct/15

Very Nice!

VeryNice!

Answered by Rasheed Soomro last updated on 27/Oct/15

f:R→R  g:R→R  f(x+y)=f(x)g(x)+f(y)g(y).........(1)  g(x+y)=f(x)f(y)+g(x)g(y)..........(2)  [f(x)]^2 +[g(x)]^2 =?  [f(x)+g(y)][g(x)+f(y)]=??  f(x)=???  g(x)=????  −−−−−−−−−−−−−−−−−−−  Let y=x,substituting in (1)  and (2)  f(2x)=2f(x) g(x)........................(3)  g(2x)=[f(x)]^2 +[g(x)]^2 ...................(4)  From (3)    g(x)=((f(2x))/(2f(x)))                    ∴         g(2x)=((f(4x))/(2f(2x)))  Substituting values of  g(x)  and   g(2x) in (4):  ((f(4x))/(2f(2x)))=[f(x)]^2 +[((f(2x))/(2f(x)))]^2   ((f(4x))/(2f(2x)))=[f(x)]^2 +(([f(2x)]^2 )/(4[f(x)]^2 ))  Multiplying by 4f(2x)[f(x)]^2  to b. s.  2f(4x)[f(x)]^2 =4f(2x)[f(x)]^4 +[f(2x)]^3   Too complicatdd                         ∗∗∗  Also from (3)    f(x)=((f(2x))/(2g(x)))  Substituting in (4)   g(2x)=[((f(2x))/(2g(x)))]^2 +[g(x)]^2   g(2x)=(([f(2x)]^2 )/(4[g(x)]^2 ))+[g(x)]^2   4g(2x)[g(x)]^2 =[f(2x)]^2 +4[g(x)]^4   Too complicated.  Continue

f:RRg:RRf(x+y)=f(x)g(x)+f(y)g(y).........(1)g(x+y)=f(x)f(y)+g(x)g(y)..........(2)[f(x)]2+[g(x)]2=?[f(x)+g(y)][g(x)+f(y)]=??f(x)=???g(x)=????Lety=x,substitutingin(1)and(2)f(2x)=2f(x)g(x)........................(3)g(2x)=[f(x)]2+[g(x)]2...................(4)From(3)g(x)=f(2x)2f(x)g(2x)=f(4x)2f(2x)Substitutingvaluesofg(x)andg(2x)in(4):f(4x)2f(2x)=[f(x)]2+[f(2x)2f(x)]2f(4x)2f(2x)=[f(x)]2+[f(2x)]24[f(x)]2Multiplyingby4f(2x)[f(x)]2tob.s.2f(4x)[f(x)]2=4f(2x)[f(x)]4+[f(2x)]3ToocomplicatddAlsofrom(3)f(x)=f(2x)2g(x)Substitutingin(4)g(2x)=[f(2x)2g(x)]2+[g(x)]2g(2x)=[f(2x)]24[g(x)]2+[g(x)]24g(2x)[g(x)]2=[f(2x)]2+4[g(x)]4Toocomplicated.Continue

Answered by prakash jain last updated on 27/Oct/15

As shown in in comments  f(x)=k_2  and g(x)=k_1  if k_1 ≠1  case g(x)≠1  since f(x) and g(x) are constants it  is sufficient to find value only for f(0)  and g(0)  (f,g)=(−(1/2),(1/2))∨((1/2),(1/2))∨(0,0)  case g(x)=1  f(x+y)=f(x)+f(y)  f(x)f(y)=0  only solution will be f(x)=0  (f,g)=(−(1/2),(1/2))∨((1/2),(1/2))∨(0,0)∨(0,1)

Asshowninincommentsf(x)=k2andg(x)=k1ifk11caseg(x)1sincef(x)andg(x)areconstantsitissufficienttofindvalueonlyforf(0)andg(0)(f,g)=(12,12)(12,12)(0,0)caseg(x)=1f(x+y)=f(x)+f(y)f(x)f(y)=0onlysolutionwillbef(x)=0(f,g)=(12,12)(12,12)(0,0)(0,1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com